Tel. +41 44 938 99 00

bautechnik@stahlton.ch www.stahlton.ch

Vorspanntechnik Litzenspannsysteme

Anwendungsdokumentation für Projektierende

Litzenspannsystem BBR VT CONA CMX

BBR VT CONA CMI – Mehrlitzen-Spannglieder mit runden Mehrflächenverankerungen BBR VT CONA CMF – 4-Litzen-Spannglieder mit flachen Mehrflächenverankerungen BBR VT CONA CMM Single – Monolitzen-Spannglieder

Inhaltsverzeichnis

1. 1.1. 1.2. 1.3.	EINLEITUNG VORWORT BENUTZUNG DER UNTERLAGEN AUFBAU SPANNGLIED BBR VT CONA CMX	3 3 3 4
2. 2.1. 2.2.	TECHNISCHE KENNZAHLEN DER BBR VT CMX SPANNGLIEDER SPANNSTAHLLITZEN SPANNGLIEDGRÖSSEN	6 6 7
3. 3.1. 3.2. 3.3. 3.4. 3.5. 3.6.	HÜLLROHRE PROFILIERTES BLECHHÜLLROHR KATEGORIE A MINIMALE UMLENKRADIEN UND SPANNGLIED-EXZENTRIZITÄTEN FÜR RUNDE BLECHHÜLLROHRE DER KATEGORIE A MINIMALE UMLENKRADIEN UND SPANNGLIED-EXZENTRIZITÄTEN FÜR FLACHE BLECHHÜLLROHRE DER KATEGORIE A PROFILIERTES KUNSTSTOFFHÜLLROHR BBR VT KATEGORIE B / C MINIMALE UMLENKRADIEN UND SPANNGLIED-EXZENTRIZITÄTEN FÜR RUNDE KUNSTSTOFFHÜLLROHRE DER KAT. B / C MINIMALE UMLENKRADIEN UND SPANNGLIED-EXZENTRIZITÄTEN FÜR FLACHE KUNSTSTOFFHÜLLROHRE DER KAT. B / C	8 8 9 10 10 11 12
4. 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13.	Hinweise für die Projektierung Korrosionsschutzkategorien Korrosionsschutz Spannkraftverluste Spannvorgang Füllungsgrad und Spannglied-Exzentrizität Minimale Gerade beidseitig der Verankerungen Kabelhalter Betonfestigkeiten beim Spannen Krafteinleitung und Kraftumlenkung Bewehrung in der Verankerungszone Rand- & Achsabstände Platzbedarf zum Spannen Werkgefertigte Spannglieder	12 12 13 15 15 16 17 19 21 22 24 25
5. 5.1. 5.2. 5.3. 5.4. 5.5.	VERANKERUNGSTYPEN BBR VT CMX KAT.A & KAT.B ÜBERSICHT DER VERANKERUNGSTYPEN (SPANN- UND FESTANKER) VERANKERUNG TYP CMI/CMF (SPANNANKER SA- UND FESTANKER FA) FESTE VERANKERUNG TYP CMO FESTE VERANKERUNG TYP S FESTE VERANKERUNG TYP P UMLENKVERANKERUNG TYP U	26 26 28 29 30 31 32
6. 6.1. 6.2.	KUPPLUNGEN BBR VT CONA CMI; KAT.A & KAT.B KUPPLUNG K (KOPPLUNGSKÖRPER) KUPPLUNG H (HÜLSENKUPPLUNG)	33 33 34
7. 7.1. 7.2. 7.3. 7.4.	VERANKERUNGEN BBR VT CMI E KAT. C (ELEKTRISCH ISOLIERTE SPANNGLIEDER) VERANKERUNG TYP CMI E (SA UND FA) KUPPLUNGEN TYP CMI E (H-KUPPLUNG) SPEZIELLE HINWEISE FÜR SPANNGLIEDER KAT. C MESSEINRICHTUNGEN	36 36 37 38 38

1. Einleitung

1.1. Vorwort

Stahlton AG setzt seit einiger Zeit erfolgreich das Litzenspannsystem BBR VT CONA CMX ein. Dieses System mit Europäischer Zulassung entspricht modernsten internationalen Standards und hat seine Vorzüge bei einer Vielzahl von Objekten auf der ganzen Welt und in der Schweiz bereits unter Beweis gestellt.

Für die spezifischen Schweizer Bedürfnisse wurde das System modifiziert und nach den Vorgaben der SIA zertifiziert und das Sortiment entsprechend ergänzt und angepasst. Das BBR VT CONA CMX System mit seiner Vielseitigkeit ermöglicht den Ingenieuren und Bauunternehmungen bei der Planung und Ausführung ihrer vorgespannten Tragwerke eine einfache Anwendung.

1.2. Benutzung der Unterlagen

Diese Broschüre ist eine auf den Schweizerischen Markt ausgerichtete Zusammenstellung der benötigten Arbeitsgrundlagen für die Planung und Bemessung der Litzenspannsysteme BBR VT CONA CMX.

Weitergehende **Detailinformationen** entnehmen Sie bitte den Dokumenten:

Technische Zulassungen

Mehrlitzensysteme

- Eignungs- und Konformitätsnachweis nach SIA 262 Nr. 004
- Europäische Technische Bewertung, ETA-06/147, BBR VT CONA CMI
- Europäische Technische Bewertung, ETA-12/0076, BBR VT CONA CMF (Spezialverankerungen für 4-Litzenspannglieder)
- Europäische Technische Bewertung, ETA-15/0808, BBR VT CONA CMO (Haftverankerung für Festanker)

Monolitzensysteme

- Eignungs- und Konformitätsnachweis nach SIA Norm 262 Nr. 005
- Europäische Technische Bewertung, ETA-12/0282, BBR VT CONA CMM

Normen

- Die einschlägigen Normen der SIA, insbesondere Norm SIA 260, 261, 262, 262/1.
- Richtlinie «Massnahmen zur Gewährleistung der Dauerhaftigkeit von Spanngliedern in Kunstbauten» ASTRA/ OFROU 12 010.

System-/ CAD-Zeichnungen

Auf unserer Homepage finden Sie die aktuellen Verankerungen als Download für Ihre Planung.

Bei Fragen zur Vorspanntechnik kontaktieren Sie bitte unsere Stahlton-Berater:

Stahlton AG Wässeristrasse 29 CH-8340 Hinwil/ZH

Telefon: +41 44 938 99 00

Stahlton AG Martinsbruggstrasse 65 CH-9016 St. Gallen/SG Telefon: +41 71 282 38 82 Stahlton AG Mariahilfstrasse 51 CH-1712 Tafers/FR

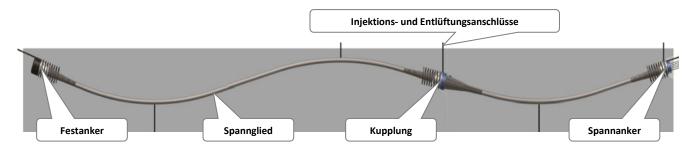
Telefon: +41 26 494 58 58

Stahlton AG Hauptstrasse 11 CH-5070 Frick/AG

Telefon: +41 62 865 76 00

Stahlton AG Strada Cantonale 23 6805 Mezzovico/TI Telefon: +41 91 935 94 30

Homepage: www.stahlton.ch Email: bautechnik@stahlton.ch


1.3. Aufbau Spannglied BBR VT CONA CMX

Das BBR VT CONA **CMX** beinhaltet alle weiteren Systeme derselben Familie. Das System BBR VT CONA CMX (**CMI** und **CMF**) ist ein **Mehrlitzensystem** für Anwendung von Vorspannung mit Verbund der Korrosionskategorien a und b. Das BBR VT CONA **CMI** E ist ein Mehrlitzensystem für Anwendungen der Korrosionsschutzkategorie c. Das CONA **CMM** ist ein Monolitzensystem für die Korrosionsschutzkategorien a und b.

Die wesentlichen Bestandteile des Spannsystems werden nachfolgend kurz erläutert:

Spannglied

Das Spannglied besteht aus einer auf den Verwendungszweck abgestimmten Anzahl von hochwertigen Spannstahllitzen und einem umhüllenden Hüllrohr, welches nach dem Aufbringen der Vorspannkraft mit Injektionsgut verfüllt wird. Die Spannstahllitzen werden beidseitig in einem Ankerkopf kraftschlüssig zusammengefasst.

Festanker (auch Feste Verankerung genannt)

In den meisten Fällen wird an einem Spanngliedende ein Festanker angebaut. Die Krafteinleitung kann über einen Verankerungskörper oder eine Haftverankerung erfolgen.

Spannanker (auch Bewegliche Verankerung genannt)

Mittels der Spannanker werden die Spannglieder vorgespannt. Die Krafteinleitung erfolgt immer über einen Verankerungskörper. Beim Verankern mit Ringkeilen werden die Litzen um ein Setzmass (Keilschlupf) in den Ankerkopf eingezogen.

Die spezifischen Bezeichnungen (CMI, CMF, CMM, etc.) kennzeichnen die Art der Verankerungen.

Die Spiral- und Zusatzbewehrungen sind nicht dargestellt!

Kupplungen

Mit Kupplungen können Spannglieder unterschiedlicher Einbau- und Spannetappen miteinander kraftschlüssig verbunden werden. Dabei wird zwischen Festen und Verschieblichen (Beweglichen) Kupplungen unterschieden.

Hüllrohre

Die Hüllrohre umgeben das Bündel der Spannstahllitzen. Dabei wird zwischen Blechhüllrohren und Kunststoffhüllrohren unterschieden.

Injektionsmörtel/ Verfüllgut

Der Injektionsmörtel bildet zusammen mit der Wahl des Hüllrohrs einen zentralen Bestandteil des Korrosionsschutzes für das Spannglied.

Zusatzbewehrung

Infolge der Kraftausbreitung treten in den Verankerungszonen signifikante quergerichtete Spaltzug- und Randzugkräfte auf. Diese Zugkräfte müssen durch eine wirksame Zusatzbewehrung abgedeckt werden. Die Modelle basierend auf der Europäischen Technischen Bewertung (ETA) erfordern nebst der Spirale immer eine Zusatzbewehrung.

2. Technische Kennzahlen der BBR VT CMX Spannglieder

2.1. Spannstahllitzen

Für das **System BBR VT CONA CMX** werden nur 7-drähtige Spannstahllitzen mit einer Zugfestigkeit von 1860 N/mm² und einer Querschnittsfläche von 150mm² zum Einsatz. Zugelassen sind jedoch auch 7-drähtige Spannstahllitzen mit einer Zugfestigkeit von 1860 N/mm² und einer Quer-schnittfläche von 140mm². Die charakteristischen Eigenschaften des verwendeten Spannstahls sind der untenstehenden Tabelle zu entnehmen.

7-drähtige Spannstahllitze

Bezeichnung des Litzentyps	-	Y18609	57-15.7
Nenndurchmesser	ø	15.7 (0.6")	mm (Zoll)
Querschnittsfläche	Ap	150	mm2
Zugfestigkeit	f _{pk}	1860	N/mm2
Fliessgrenze	f _{p0.1k}	1600	N/mm2
Elastizitätsmodul (Nominalwert)	Ep	195	kN/mm2
Dehnung bei Höchstlast (Minimalwert)	ε _{uk}	3.5	%
Ermüdungsfestigkeit (2 Mio. Lastwechsel, Oberspannung 0.7xf _{pk})	Δ6 _{p,fat}	190	N/mm2
Relaxation (nach 1000 Stunden, Anfangsspannung 0.7xf _{pk})	Δб _{рг}	2.5	%
Bruchkraft	F _{pk}	279	kN

Litzencoils

Spannanker (Bewegliche Verankerungen)

2.2. Spanngliedgrössen

Die Standardspannglieder bestehen aus 1, 4, 7, 12, 15, 19, 22, 27 und 31 Litzen. Zwischengrössen sind jedoch möglich, wobei jeweils der nächstgrössere Ankerkopf mit entsprechend reduzierter Litzenanzahl verwendet wird.

Spannglied- typ	Litzen- anzahl	Gewicht	Fläche	Bruchkraft	Bemessungswert	Spannl	kräfte			
	Y1860 S7-15.7	G	Ap	F_{pk} $f_{pk} = 1860 \text{ N/mm}^2$	F_{pRd} $f_{pd} = 1390 \text{ N/mm}^2$	Überspannkraft P _{max} = 0.75xF _{pk}	Festsetzkraft $P_0 = 0.7xF_{pk}$			
	Stk.	kg/m	mm²	kN	kN	kN	kN			
Monolitzen-Spannglieder										
0106	1	1.2	150	279	208	209	195			
Mehrlitzen-Spannglieder										
	2	2.4	300	558	417	419	391			
0406	3	3.5	450	837	626	628	586			
	4	4.7	600	1116	834	837	781			
	5	5.9	750	1395	1043	1046	977			
0706	6	7.1	900	1674	1251	1256	1172			
	7	8.3	1050	1953	1460	1465	1367			
	8	9.4	1200	2232	1668	1674	1562			
	9	10.6	1350	2511	1877	1883	1758			
1206	10	11.8	1500	2790	2085	2093	1953			
	11	13.0	1650	3069	2294	2302	2148			
	12	14.2	1800	3348	2502	2511	2344			
	13	15.3	1950	3627	2711	2720	2539			
1506	14	16.5	2100	3906	2919	2930	2734			
	15	17.7	2250	4185	3128	3139	2930			
	16	18.9	2400	4464	3336	3348	3125			
1906	17	20.1	2550	4743	3545	3557	3320			
1900	18	21.2	2700	5022	3753	3767	3515			
	19	22.4	2850	5301	3962	3976	3711			
	20	23.6	3000	5580	4170	4185	3906			
2206	21	24.8	3150	5859	4379	4394	4101			
	22	26.0	3300	6138	4587	4604	4297			
	23	27.1	3450	6417	4796	4813	4492			
	24	28.3	3600	6696	5004	5022	4687			
2706	25	29.5	3750	6975	5213	5231	4883			
	26	30.7	3900	7254	5421	5441	5078			
	27	31.9	4050	7533	5630	5650	5273			
	28	33.0	4200	7812	5838	5859	5468			
2405	29	34.2	4350	8091	6047	6068	5664			
3106	30	35.4	4500	8370	6255	6278	5859			
	31	36.6	4650	8649	6464	6487	6054			
				Flach-Spannglied	er					
0406-FL	4	4.7	600	1116	834	837	781			
0606-FL	6	7.1	900	1674	1251	1256	1172			

3. Hüllrohre

Bei der Wahl der Hüllrohrdurchmesser ist es vorteilhaft zu wissen, ob die Spannglieder im Werk fabriziert werden können oder auf der Baustelle gefertigt werden müssen. Werkgefertigte Spannglieder erlauben im Allgemeinen einen kleineren Hüllrohrdurchmesser, wodurch eine grössere statische Höhe erzielt werden kann. Nähere Angaben zur Möglichkeit von Werkfertigung finden Sie in Kapitel 4.13. (Werkgefertigte Spannglieder).

3.1. Profiliertes Blechhüllrohr Kategorie a

Profilierte Blechhüllrohre werden aus Bandstahl geformt gemäss EN 523 und können als Normalhüllrohre (runde Rohre) für eine Vielzahl von Durchmessern und als Flachhüllrohre in den Abmessungen 21/80-FL (bis 4 Litzen) und 28/110-FL (bis 6 (7) Litzen) gefertigt werden. Je nach Dimension und Verwendung haben Blechhüllrohre eine Wandstärke von 0.3 - 0.4mm.

Runde Blechhüllrohre

Flache Blechhüllrohre

	Runde Blechhüllrohre									
Hüllrohrtyp	$\mathbf{\phi}_{i}$	$\mathbf{Ø}_{a}$	t							
Typ 41	44	46	0.30							
Typ 51	51	56	0.30							
Typ 54	54	59	0.30							
Typ 60	60	65	0.30							
Тур 66	66	72	0.32							
Тур 75	75	80	0.35							
Typ 80	80	85	0.35							
Тур 85	85	90	0.35							
Тур 88	88	93	0.35							
Тур 95	95	102	0.40							
Typ 105	105	112	0.40							
Typ 115	115	122	0.40							
Typ 120	120	127	0.40							
Тур 127	130	137	0.40							

Legen	de: alle Masse in mm
ϕ_{i}	Innendurchmesser

 \emptyset_i Innendurchmesser \emptyset_a Aussendurchmesser

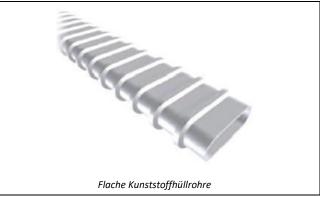
t Wandstärke

Flache Blechhüllrohre									
Hüllrohrtyp h _i /h _a b _i /b _a t									
Typ 21x80 FL	21/25	80/84	0.30						
Typ 28x110 FL	28/32	110/114	0.30						

3.2. Minimale Umlenkradien und Spannglied-Exzentrizitäten für runde Blechhüllrohre der Kategorie a

Spanngliedtyp	Litzen- anzahl	Festsetzkraft	WERK- gefertigte Spannglieder		gefo	BAUSTELLEN- ertigte Spanngl		
	Y1860 S7-15.7	$P_0 = 0.7xF_{pk}$	Hüllrohrtyp Ø _i /Ø _a	Exzentrizität e	Minimal- radius R _{min}	Hüllrohrtyp Øi/Øa	Exzentrizität e	Minimal- radius R _{min}
	Stk.	kN	-	mm	m	-	mm	m
			Meh	rlitzen-Spanngli	eder			
	2	391		17			18	
0406	3	586	51/57	13	2.50	54/60	16	2.50
	4	781		10			13	
	5	977		13			18	
0706	6	1172	60/65	10	4.00	66/72	15	3.25
	7	1367		9			13	
2025	8	1562	75 /00	18	4.20	00/05	18	2.70
0906	9	1758	75/80	16	4.20	80/85	16	3.70
	10	1953	75/80	14		80/85	17	
1206	11	2148		13	5.00		15	4.70
	12	2344		12			14	
	13	2539	85/90	14			20	5.00
1506	14	2734		13	5.50	95/102	19	
	15	2930		12			18	
	16	3125	95/102	15			18	
4005	17	3320		15	6.25	05/402	17	6.00
1906	18	3515		14		95/102	16	
	19	3711		13			15	
	20	3906		14			18	
2206	21	4101	95/102	13	7.00	0 105/112	17	6.40
	22	4297		13			17	
2405	23	4492	405/442	17	7.60	445/422	22	7.20
2406	24	4687	105/112	16	7.60	115/122	20	7.20
	25	4883		15			19	
2706	26	5078	105/112	14	7.80	115/122	18	7.20
	27	5273		13			17	
	28	5468		18			25	
24.25	29	5664	445/422	17	0.25	420/427	24	7.25
3106	30	5859	115/122	16	8.25	130/137	23	7.35
	31	6054		15			22	

3.3. Minimale Umlenkradien und Spannglied-Exzentrizitäten für flache Blechhüllrohre der Kategorie a


Spanngliedtyp	Litzen- anzahl	Festsetzkraft	WERK- und BAUSTELLEN- gefertigte Spannglieder							
	Y1860 S7-15.7	$P_0 = 0.7xF_{pk}$	Hüllrohrtyp h _i xb _i	Exzentrizität e	Minimalradius vertikal R _{v,min}	Minimalradius horizontal R _{h,min}				
	Stk.	kN	-	mm	m	mm				
	Flach-Spannglieder									
	2	391								
0406 FL	3	586	21x80 FL	3	2.50	6.00				
	4	781								
0606 FL	5	977	28x110 FL	6	2.50	9.00				
0606 FL	6	1172	28X110 FL	О	3.50	8.00				
0706 FL*	7	1367	28x110 FL	6	3.50	10.00				

^{*0706} FL: herstellbar bis zu einer maximalen Spanngliedlänge von 20m!

3.4. Profiliertes Kunststoffhüllrohr BBR VT Kategorie b / c

Profiliertes Kunststoffhüllrohr entsprechend fib-Bulletin 75 und EAD. BBR VT runde Kunststoffhüllrohr ist in den Nenndurchmessern von 50 bis zu 130mm verfügbar, flache Kunststoffhüllrohre in den Abmessungen von 2 bis 4 Litzen. Das Rohr macht sich eine besondere Materialzusammensetzung zunutze, die den Einsatz bei **Temperaturen von -20° bis +50°C zulässt**.

Runde Kunststoffhüllrohre										
Hüllrohrtyp	Øi	$\mathbf{\phi}_{a}$	Ø _r	t	d _r					
BBR VT 25	23	27	37	2.0	40					
BBR VT 50	48	52	59	2.0	28					
BBR VT 60	59	63	73	2.0	42					
BBR VT 75	76	81	91	2.5	52.5					
BBR VT 100	100	106	116	3.0	39.5					
BBR VT 115	115	122	135	3.5	39.5					
BBR VT 130	129	137	152	4.0	40.5					

Flache Kunststoffhüllrohre								
Hüllrohrtyp	h _i /h _a	b _i /b _a	h _r /b _r	t	d _r			
BBR VT 21x72	21/25	71/75	36/86	2.0	40			

Legende: alle Masse in mm Ø_i Innendurchmesser

Øa AussendurchmesserØr Rippendurchmesser

Wandstärke

 $\begin{array}{ll} h_i/h_a & \text{Innen-/ Aussenabmessung der H\"{o}he} \\ b_i/b_a & \text{Innen-/ Aussenabmessung der Breite} \\ h_r/b_r & \text{Rippenabmessung der H\"{o}he/ Breite} \end{array}$

d_r Rippenabstand

3.5. Minimale Umlenkradien und Spannglied-Exzentrizitäten für runde Kunststoffhüllrohre der Kat. b/c

Spanngliedtyp	Litzen- anzahl	Festsetzkraft	WERK- gefertigte Spannglieder		gefo	BAUSTELLEN ertigte Spanng		
	Y1860 S7-15.7	$P_0 = 0.7xF_{pk}$	Hüllrohrtyp Ø _i /Ø _a	Exzentrizität e	Minimal- radius R _{min}	Hüllrohrtyp Øi/Øa	Exzentrizität e	Minimal- radius R _{min}
	Stk.	kN	-	mm	m	-	mm	m
			Mehi	rlitzen-Spanngli	ieder			
	2	391		14			14	
0406	3	586	BBR VT 50 48/52/59	11	4.30	BBR VT 50 48/52/59	11	4.30
	4	781		8			8	
	5	977		13			13	
0706	6	1172	BBR VT 60 59/63/73	10	6.10	BBR VT 60 59/63/73	10	6.10
	7	1367		9			9	
0000	8	1562	BBR VT 75	18	C 70	BBR VT 75	18	C 10
0906	9	1758	76/81/91	16	6.70	76/81/91	16	6.10
	10	1953		15			15	
1206	11	2148	BBR VT 75 76/81/91	13	6.90	BBR VT 75 76/81/91	13	6.90
	12	2344		11			11	
	13	2539	BBR VT 100 100/106/116	25			25	5.50
1506	14	2734		24	5.50	BBR VT 100 100/106/116	24	
	15	2930		23			23	
	16	3125	BBR VT 100 100/106/116	21			21	
4005	17	3320		20	6.00	BBR VT 100	20	6.90
1906	18	3515		18	6.90	100/106/116	18	
	19	3711		17			17	
	20	3906		16			26	
2206	21	4101	BBR VT 100 100/106/116	14	8.30	BBR VT 115 115/122/135	25	6.90
	22	4297	100, 100, 110	13			23	
2405	23	4492	BBR VT 100	12	0.70	BBR VT 115	22	6.00
2406	24	4687	100/106/116	11	8.70	115/122/135	20	6.90
	25	4883		19			19	
2706	26	5078	BBR VT 115 115/122/135	18	7.60	BBR VT 115 115/122/135	18	7.60
	27	5273	113, 112, 133	17		113, 122, 133	17	
	28	5468		17			25	
	29	5664	BBR VT 115	16	0.70	BBR VT 130	24	7.60
3106	30	5859	115/122/135	15	8.70	129/137/152	23	7.60
	31	6054		14			22	

3.6. Minimale Umlenkradien und Spannglied-Exzentrizitäten für flache Kunststoffhüllrohre der Kat. b / c

Spanngliedtyp	Litzen- anzahl	Festsetzkraft	WERK- und BAUSTELLEN- gefertigte Spannglieder							
	Y1860 S7-15.7	$P_0 = 0.7xF_{pk}$	Hüllrohrtyp h _i /b _i	Exzentrizität e	Minimalradius vertikal R _{v,min}	Minimalradius horizontal R _{h,min}				
	Stk.	kN	-	mm	m	mm				
	Flach-Spannglieder									
0406 EI	3	586	BBR VT	2	2.50	6.00				
0406 FL	4	781	21x72 FL	3	2.50	6.00				

4. Hinweise für die Projektierung

4.1. Korrosionsschutzkategorien

Wir verweisen auf die Richtlinie der ASTRA/OFROU 12 010 «Massnahmen zur Gewährleistung der Dauerhaftigkeit von Spanngliedern in Kunstbauten» vom Bundesamt für Strassen ASTRA und der SBB. Eine entsprechende Referenzierung findet sich ebenfalls in der Schweizer Norm SIA 262/1 unter Ziffer 3.4.2.2.

4.2. Korrosionsschutz

Injektionsgut

Der definitive Korrosionsschutz der Spannglieder mit Verbund erfolgt durch das Injizieren mit einem zementösen Füllgut und durch die alkalische Eigenschaft des umgebenden Bauwerkbetons. Es gelten die Normen SN EN 445:2007 und 447:2007 sowie die zugehörigen Nationalen Vorwörter und Anhänge 2008.

Die maximale Zeitspanne zwischen dem Einbau von Spanngliedkomponenten und der Ausführung der Injektion ist gemäss der Norm SIA 262, Art. 6.3 geregelt.

- maximal 12 Wochen zwischen der Herstellung der Spannglieder und dem Injizieren
- maximal 4 Wochen in der Schalung, bevor der Beton eingebracht wird
- maximal 4 Wochen in gespanntem Zustand bis zur Injektion

Weitere Informationen finden sich in den entsprechenden Zulassungen.

Temporärer Korrosionsschutz

Sieht das Bauprogramm längere Fristen vor, so sind bereits in der Planung Massnahmen für den temporären Korrosionsschutz bei Bestellung vorzusehen. Es gelten die Bestimmungen der Norm SIA 262 (Ziffern 6.3.2) und Richtlinie ASTRA Ziffer 5.2.2. Die Stahlton AG sieht in solchen Fällen die Verwendung von temporär geschützten Litzen vor, welche bereits im Herstellerwerk mit einer genehmigten Korrosionsschutzemulsion behandelt werden.

Die Eignung folgender Produkte für den temporären Korrosionsschutz gilt in der Schweiz (EMPA) als bestätigt:

- · Rostschutz 310
- NOX-RUST X-703-D
- · ARC FLUID TK

Copyright © 2020 by Stahlton AG

4.3. Spannkraftverluste

Die Vorspannung wird von der beweglichen Verankerung her in das Spannglied eingebracht. Aufgrund verschiedenster Arten von unmittelbaren und zeitabhängigen Verlusten variiert die Spannkraft im Spannglied sowohl über die ganze Länge als auch über die Lebensdauer des Bauwerks.

Reibungsverluste

Sofortige Verluste treten hauptsächlich durch die Reibung zwischen Spannglied und Innenwand des Hüllrohres auf.

Die Berechnung der Spannkräfte zum Zeitpunkt des Vorspannens als auch nach Abklingen von Schwinden und Kriechen muss eine Reihe von Verlusten berücksichtigen. Für eine ausführliche Darstellung verweisen wir auf die Fachliteratur.

Die Berechnung der Verluste infolge Reibung erfolgt nach dem Coulomb'schen Gleitreibungsgesetz:

 $P_x = P_{max} + e^{-\mu(\phi x + \Delta \phi \cdot x)}$

Dabei bedeuten:

Px Spannkraft im Abstand x von der Spannstelle

 P_{max} maximale Kraft im Spannglied während des Spannens

e Eulersche Zahl

 $\mu \qquad \text{Gleitreibungskoeffizient}$

φx Summe der Umlenkwinkel im Bogenmass über die Strecke x (Σφi)

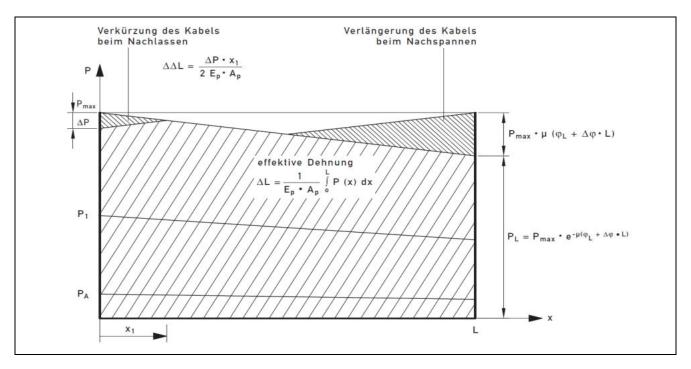
 Δ_{ϕ} ungewollte Winkeländerungen pro Längeneinheit

Für μ und Δ_{ϕ} können folgende Werte eingesetzt werden:

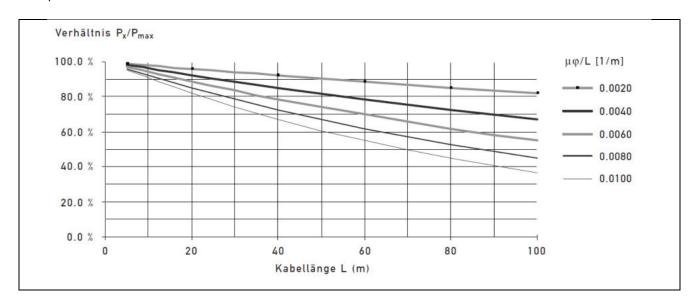
Hüllrohrtyp	Kategorie	Reibungs	koeffizient μ	Ungewollte	Umlenkung Δ _φ
		Nominalwert	Streubereich	Nominalwert	Streubereich
Blechhüllrohr	а	0.18	0.17 - 0.19	0.005	0.004 - 0.007
Kunststoffhüllrohr	b / c	0.12	0.10 - 0.14	0.005	0.004 - 0.008

Bedingt durch Verlege-Ungenauigkeiten und durch Abweichungen von der Theorie, muss bei den Reibungsverlusten mit Streuungen gerechnet werden. Wir empfehlen eine Abschätzung der Reibungsverluste mit den vorstehenden Extremwerten der Streubereiche.

Bemerkung zu den Reibungsverlusten:


 Da die Reibungsverluste stark von den Spanngliedumlenkungen abhängig sind, ist bei der Festlegung der Spanngliedgeometrie die Summe der Umlenkwinkel zu minimalisieren. Brüske Spanngliedumlenkungen sind zu vermeiden. Die Umlenkradien sollen nicht kleiner als notwendig sein und horizontale Umlenkungen möglichst vermieden werden.

Copyright © 2020 by Stahlton AG


Spanngliedverlängerungen

Die Dehnung des Spanngliedes setzt sich zusammen aus der Verlängerung des Spanngliedes und der Verkürzung des Betons. Bei nachfolgenden Betrachtungen wird die Betonverkürzung vernachlässigt

Spannkraftverlauf

Mit Hilfe des nachfolgenden Diagramms kann der Spannkraftverlauf abgeschätzt werden. Für gleichmässige Spanngliedgeometrien liegt der spezifische Reibungsexponent $\mu\phi/L$ in der Regel zwischen 0.002/m bis 0.006/m.

Bemerkungen:

- · Obiges Diagramm basiert auf einer gleichmässigen Verteilung des Reibungsexponenten
- \cdot Ungleichmässige Verteilung der Umlenkwinkel ϕ bewirkt eine Verteilung des Spannkraftverlaufs, welche vom obigen Diagramm abweicht
- Bei unregelmässigen oder ausserordentlichen Spanngliedgeometrien (brüske Spanngliedumlenkungen, Zusammenfügen von Minimalradien) können die oben erwähnten spezifischen Reibungsexponenten überstiegen werden und grössere Spannkraftverluste auftreten. Dabei können Werte μφ/L grösser als 0,01/m resultieren

Ausgabe 06/2020

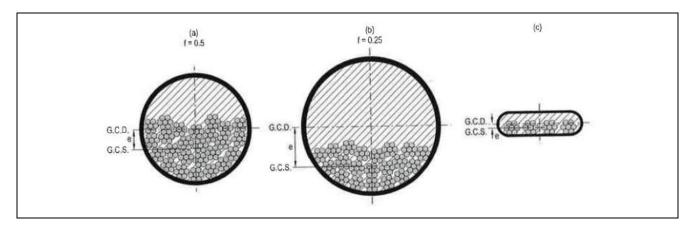
4.4. Spannvorgang

Das Aufbringen der Spannkräfte erfolgt gemäss dem vom Projektverfasser vorgängig festgelegtem Spannprogramm. Die verlangte Betonfestigkeit ist am Bauwerk durch die Unternehmung zu verifizieren. Das Spannen und gegebenenfalls Verkeilen hat mit einer dafür geeigneten Spannpresse zu erfolgen. Die Verkeilkraft beträgt ungefähr 25 kN pro Keil. Nach dem Ablassen der Spannkraft von der Spannpresse zieht das Spannglied die Litzen um ein Setzmass (Keilschlupf) in den Ankerkörper hinein.

Die Dehnwege und Spannkräfte sind während des Spannvorgangs laufend zu überprüfen. Die Ergebnisse des Spannvorgangs sind aufzuzeichnen und die gemessenen Spannwege sind mit den zuvor errechneten Werten zu vergleichen. Die Reibungsverluste in den Verankerungen und in der Spannpresse werden beim Spannvorgang durch die Stahlton AG gemäss SIA 262 berücksichtigt.

Keilschlupf

Während der Lastübertragung von der Spannpresse auf die Verankerung werden die Keile in den Ankerkopf eingezogen (Keilschlupf), wodurch ein Teil des Dehnweges, respektive der aufgebrachten Spannkraft wieder verloren geht. Generell beträgt der Keilschlupf an Spann- und Festanker sowie an festen Kupplungen jeweils 3 – 4 mm beim Einsatz einer Spannpresse mit Verkeileinrichtung. Der Keilschlupf wird beim Spannvorgang berücksichtigt.

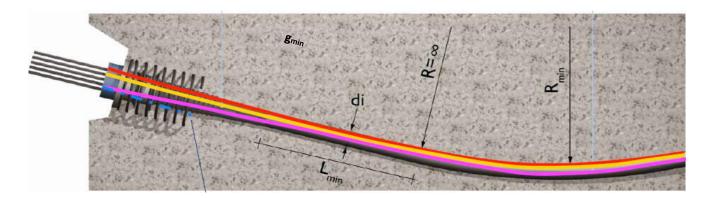

Langzeitverluste

Langzeitverluste werden hauptsächlich durch die Relaxation des Spannstahls und das Kriechen und Schwinden des Betons verursacht. Als Relaxation bezeichnet man den zeitabhängigen Spannungsverlust des gespannten Stahls infolge der andauernden Dehnung. Kriechen und Schwinden beschreiben die zeitabhängigen Verkürzungen des Betons aufgrund von Feuchtigkeitsverlust beziehungsweise anhaltender Druckspannung.

4.5. Füllungsgrad und Spannglied-Exzentrizität

Als **Füllgrad f** bezeichnet man das Flächenverhältnis **des Spannstahlquerschnitts zum Innenquerschnitt des Hüllrohrs**. Er beträgt im Allgemeinen zwischen **0.30** und **0.50**. Je kleiner der Füllungsgrad ist, desto weiter liegt bei Spanngliedkrümmungen der <u>Schwerpunkt des Litzenbündels</u> von dem des Hüllrohrs entfernt. **Diese Exzentrizität e** sollte bei der Projektierung beachtet werden, da sie einen **Einfluss auf die statische Höhe** und somit auf die erforderliche Höhe der Kabelunterstützung (Kabelhalter) hat.

Angaben zur Spannglied-Exzentrizität für alle Hüllrohrgrössen finden sich im Kapitel 3.2.



Spanngliedschwerpunkt bei hohem (a) und niedrigem Füllungsgrad (b) und bei Flachhüllrohr (c)

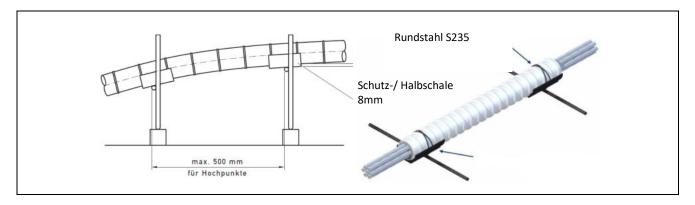
4.6. Minimale Gerade beidseitig der Verankerungen

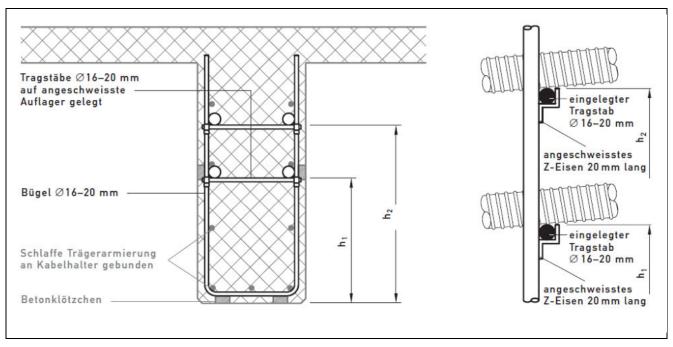
Hinter den Verankerungen und Kupplungen sollten Spannglieder auf einer Mindestlänge gerade geführt werden, bevor sie im Bogen mit dem Mindestradius R_{min} weitergeführt werden (siehe Abbildung). Die Gerade g_{min} ist ab Ankerplatte massgebend.

Folgendes Kriterium ist in obigen Vorgaben der Gerade bereits berücksichtigt.

Bei Spanngliedern mit einem Füllungsgrad von $0.30 \le f \le 0.50$ ist die minimale Länge L_{min} hinter der Trompete:

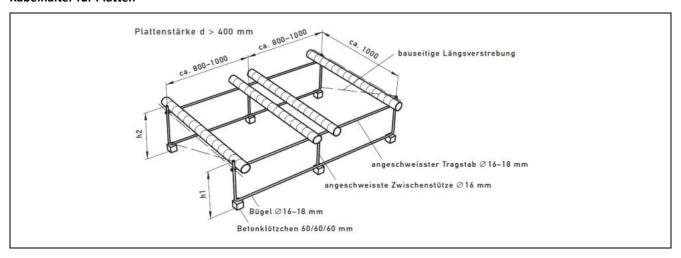
	Verankerungen Spanngliedtypen CMI										
Тур	-	- 0406 0706 1206 1506 1906 2206 2706									
Gerade (g) vor Verankerung	mm	700	800	1100	1300	1300	1400	1600	1600		
			Kupplu	ngen zu Span	ngliedtypen	СМІ					
Gerade (g) beidseits der Kupplung	mm	700	800	1100	1300	1300	1400	1600	1600		


L_{min} = 5 * di ≥ 250mm

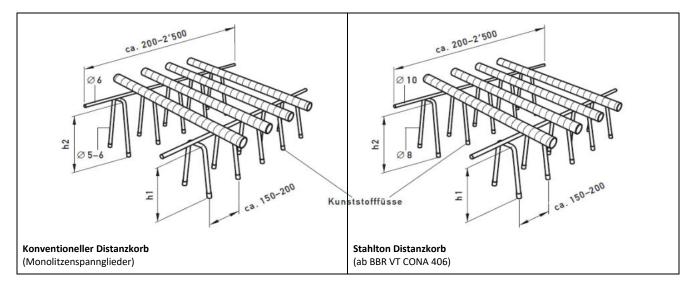

4.7. Kabelhalter

Um die Spannglieder in der **korrekten Position** zu halten und gegen Auftrieb beim Betonieren zu sichern, müssen sie in regelmässigen Abständen auf Kabelhaltern aufgelegt und dort befestigt werden. Folgende konstruktive Hinweise sollen bei der Festlegung der Kabelhalter berücksichtigt werden:

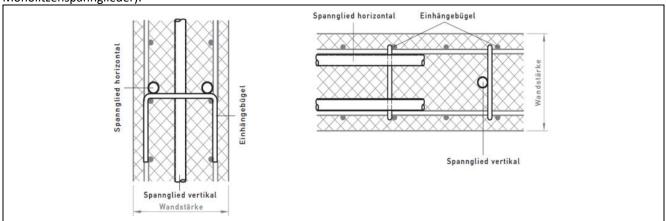
- Der Kabelhalterabstand kann im Normalfall das 10fache des Innendurchmessers des Hüllrohrs betragen, jedoch nicht mehr wie 100cm
- In den Hochpunkten empfehlen wir einen Abstand von 50cm sowie das Einlegen einer Kunststoffhalbschale zwischen Hüllrohr und Kabelhalter bei der Verwendung von Kunststoffhüllrohren. Die Stärke der Kunststoffhalbschale beträgt 8mm
- Kunststoffhalbschalen sind mindestens in allen konkaven Bereichen der Kabelführung (Umlenkkraft wirkt auf die Kabelhalter)
- · Bei Flachkabeln soll der Abstand nie grösser wie 60cm bis 80cm betragen
- Die Querstäbe der Kabelhalter sind aus Rundstahl S235 herzustellen
- · Die Kabelhalter sollen nicht Teil der erforderlichen Bügelbewehrung sein



Kabelhalter für Träger



Kabelhalter für Platten


Plattenstärke d < 400 mm

Für Monolitzenspannglieder können normale Distanzkörbe verwendet werden. Für schwerere Spannglieder sollten verstärkte Distanzkörbe oder Kabelhalter entsprechend d > 400 mm verwendet werden, damit die Kabellage gewährleistet werden kann.

Kabelhalter für Wände

Horizontale und vertikale Spannglieder in Wänden werden an Einhängebügeln festgebunden. Für horizontale Spannglieder ist der Bügeldurchmesser dem Gewicht der Spannglieder und der Wandbreite anzupassen (min. Ø 10 mm, z.B. für Monolitzenspannglieder).

4.8. Betonfestigkeiten beim Spannen

Zum Zeitpunkt des Aufbringens der vollen Vorspannkraft muss der Beton in Abhängigkeit von den festgelegten Rand- und Achsabständen und der gewählten Zusatzbewehrung in der Verankerungszone mindestens eine Betondruckfestigkeit fck gemäss untenstehender Tabelle aufweisen.

	Betonsorte	C 25/30	C 30/37	C 35/45	C 40/50
Druckfestigkeit			N/n	nm2	
Zylinder	f _{ck, Zylinder}	25	30	35	40
Würfel	f _{ck, cube}	30	37	45	50

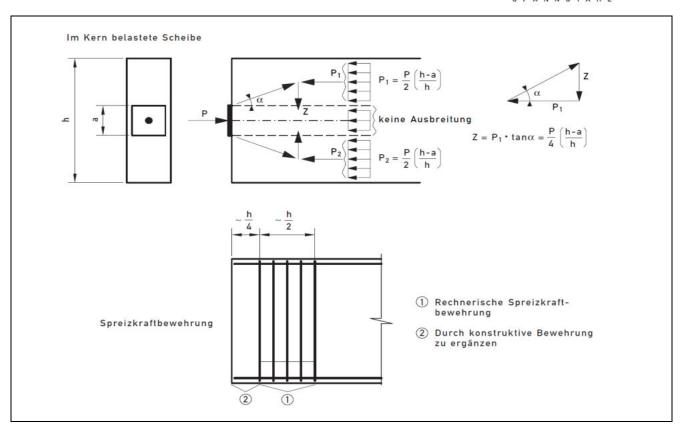
Die in dieser Dokumentation enthaltenen Angaben wie Randabstände/Achsabstände sowie die Abmessungen der Spiralen bei den Verankerungen sind auf die Betonqualität C30/37 ausgelegt.

Sollten abweichende Betonsorten/-festigkeiten verwendet werden müssen/können diese Spezifikationen gem. Zulassungsdokument ETA06-147 angepasst werden. Dies betrifft die Verankerungen SA/FA sowie die Kupplungen K und H.

Die festen Verankerungen P. CMO und S können ohne Anpassung auch für die Betonqualität C25/30 eingesetzt werden.

Für eine Teilvorspannung mit 30%- 50% der vollen Spannkraft hat der charakteristische Wert der Betondruckfestigkeit mindestens $0.5 * f_{ck,zylinder}$ oder $0.5 * f_{ck,cube}$ zu betragen.

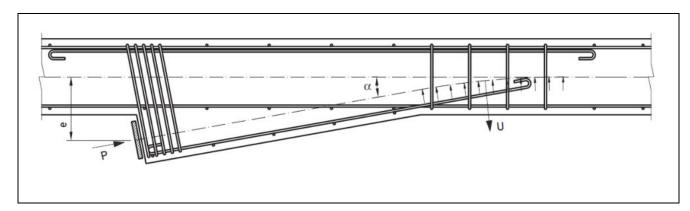
4.9. Krafteinleitung und Kraftumlenkung


Krafteinleitung

Bei den Verankerungen der Spannglieder werden konzentrierte Einzelkräfte in das Tragwerk eingeleitet.

Die Verankerungen (Ankerplatten und Spiralen) der Stahlton-Spannsysteme sind so bemessen, dass die Spannkräfte zuverlässig auf den Beton übertragen werden können.

In der Kraftausbreitungszone, d.h. von der Ankerplatte bis zum Schnitt, wo die Spannungen linear über den Querschnitt verteilt sind, treten im Beton infolge der Kraftausbreitung grössere quer- gerichtete Spaltzug- und Randzugkräfte auf. Damit keine schädigenden Risse auftreten, müssen diese Zugkräfte durch eine wirksame Bügelbewehrung abgedeckt werden. Die Betonabmessungen sind entsprechend zu wählen. Detaillierte Angaben für die Bemessung im Krafteinleitungsbereich sind der Literatur zu entnehmen. Praktisches Vorgehen: Im allgemeinen genügt eine Abschätzung der Spreizkräfte auf der Basis einfacher Fachwerkmodelle mit $\tan \alpha = \frac{1}{2}$.



Kraftumlenkungen

Gekrümmte Spannglieder pressen sich beim Spannen auf die Kraft P an die durch den Beton gebildete Leibung an. Bei einem Umlenkwinkel α und mit einem Krümmungsradius R beträgt die Umlenkkraft U:

$$U = 2P \cdot \sin \alpha / 2 \approx P \cdot \alpha$$

Liegt ein Spannglied auf der konvexen Seite einer gekrümmten Betonkonstruktion (z.B. bei seitlich aus einem Betonträger herausgeführten Verankerungsnischen oder bei der ringförmigen Vorspannung von runden Behältern) müssen die Umlenkkräfte in den Beton eingebunden werden. Durch eine Verbügelung wird ein Ausreissen des Spanngliedes verhindert.

Die erforderliche Spaltzugbewehrung ergibt sich aus:

$$A_s = \gamma_P \, \bullet \, \, U/f_{sd}$$

γ_P: Lastbeiwert für Einwirkung aus Vorspannung SIA 262, Art. 4.1.5.5.2

f_{sd}: Bemessungswert für Betonstahl gemäss Norm SIA 262, Art. 2.3.2.5

4.10. Bewehrung in der Verankerungszone

Die Bewehrung, die im besonders stark beanspruchten Bereich direkt hinter der Verankerung benötigt wird, besteht aus einer Spirale zur Aufnahme der Spaltkräfte und einer zusätzlichen Bügelbewehrung zur Rissbegrenzung.

Die Spiralen werden zusammen mit der Verankerung von der Stahlton AG geliefert, die **Zusatzbewehrung wird bauseits** gestellt.

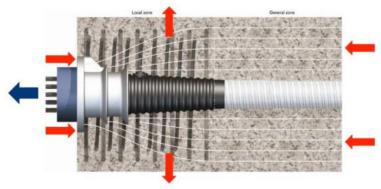


Abbildung Kraftverteilung in der Verankerungszone

Standardmässig, und wenn nicht anders verlangt, liefert die Stahlton AG Spiralen, die auf einen Beton C30/37 ausgelegt sind. Sieht die Planung andere Betonfestigkeiten beziehungsweise andere Spiralabmessungen vor, sollte die Stahlton AG bereits in der Planungsphase beigezogen werden. Gleichzeitig muss auch die Zusatzbewehrung dementsprechend angepasst werden.

Spiralen und Zusatzarmierungen

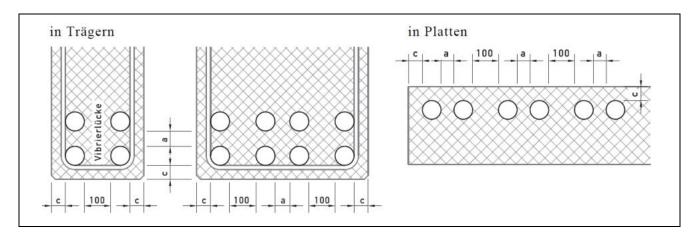
Spann-	Betonfe	estigkeit	(Im Liefe	•	ale * n Stahlton e	nthalten)	(nicht	im Lieferum	wehrung nfang von Sta alten)	ahlton
glied- typ			Durch- messer Spirale	Länge der Spirale	Stab- durch- messer	Gang- höhe	Anzahl Bügel	Stab- durch- messer	Abstand	Aussen- mass Bügel
CMI	f _{ck, Zylinder}	f _{ck, cube}	øS	LS						ВхВ
	N/mm2	N/mm2	mm	mm	mm	mm	Stk.	mm	mm	mm
0106	>20	>24					2	10	45	155/ 85
0406			155	185	10	45	3	12	55	190
0706			200	231	12		4	14	55	240
1206			250	282			6	14	50	290
1506	30	37	325	382			5	16	60	350
1906	30	3/	325	382	14	50	7	16	60	370
2206			340	382	14		8	16	50	400
2706			430	432			8	20	60	440
3106			430	432			8	20	60	480
CMF 406	20	24	240 / 130	285	10	45	7	10	50	290/ 180

Bemerkung: weiterführende detaillierte Informationen zu Bewehrungen in der Verankerungszone finden Sie in der entsprechenden Zulassung BBR VT CONA CMI gemäss ETA-06/147; Seiten 46ff:

Die erforderliche Zusatz- und Spreizbewehrung ist nicht Bestandteil der Systemlieferung.

^{*}Masstoleranzen der Spiralen gemäss SIA 262

4.11. Rand- & Achsabstände

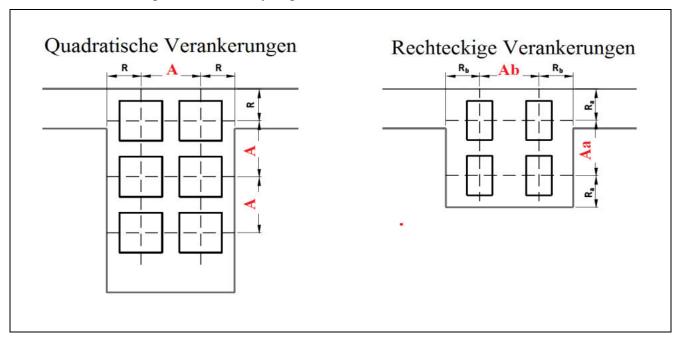

Abstände der Spannglieder

Für die Rand- und Achsabstände der Spannglieder gelten, sofern der Bauherr keine weitergehenden Anforderungen festgelegt hat, die Vorgaben der Norm SN EN 262, Kapitel 5:

Betonüberdeckung c > 30-60mm, je nach Expositionsklasse

> maximaler Korndurchmesser > ½ Hüllrohrdurchmesser

Zwischenabstand a > maximaler Korndurchmesser



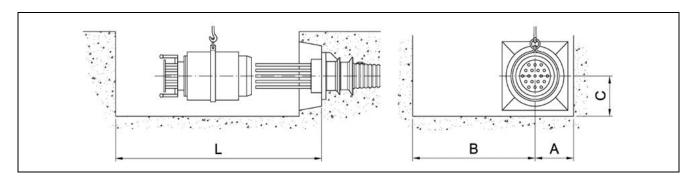
Abstände der Verankerungen

Die minimalen Rand- und Achsabstände von Verankerungen des Typs A, K oder H sowie den Spezialverankerungen Typ P, S und CMO sind abhängig von der Betonfestigkeit zum Zeitpunkt des Spannens. Angaben in Abhängigkeit der Betonfestigkeit C30/37 finden sich in den nachfolgenden Tabellen.

Bemerkung: weiterführende detaillierte Informationen zu Bewehrungen in der Verankerungszone finden Sie in der entsprechenden Zulassung BBR VT CONA CMI gemäss ETA-06/147; Seiten 38ff

Abstände der Verankerungen bei Mehrlitzenspanngliedern

Beton C30/37					Spanng	liedtyp						
		01	.06	0406	0706	1206	1506	1906	2206	2706	3106	
Verankerung			N	/lehrfläch	ehrflächenanker CMI/ CMF (Guss)							
Тур				SA, F	SA, FA, Kupplungen H & K							
Achsabstand	Α			210	260	340	380	425	460	505	545	
Achsabstand Srechteckig	Aa	mm	175	310								
	Ab		105	200								
Verankerung					Fäc	her						
Тур					ı)						
Achsabstand Pquadratische	Α			220								
Achsabstand Prechteckige	Aa	mm		280	370	430	550	580	630	680	690	
ACTISADSTATIO Prechteckige	Ab			200	230	330	350	400	440	500	550	
Verankerung					Schla	ufen						
Тур					9	5						
Ashaahatand C	Aa	ma ma	330	330	510	470						
Achsabstand S _{rechteckige}	Ab	mm	180	180	180	470						
Verankerung					Ha	aft						
Тур					(2						
				0406	0606							
Achsabstand H _{rechteckige}	Aa	mm		430	630							
Action of the Children of the	Ab			180	180							
Randabstände R, Ra, Rb		mm		R = A/2	+ c (erfo	orderlich	ne Betoi	nüberde	ckung)			


Die in den Tabellen angegebenen Abstände dürfen im Allgemeinen nicht unterschritten werden. Jedoch darf der Achsabstand der Verankerungen in einer Richtung um bis zu 15% verringert werden, wenn gleichzeitig der Abstand in der senkrecht dazu stehenden Richtung um denselben Prozentsatz erhöht wird. Zudem darf der reduzierte Achsabstand nicht kleiner als der Spiral-Aussendurchmesser sein und das Verlegen der Zusatzbewehrung muss ebenfalls noch möglich sein.

4.12. Platzbedarf zum Spannen

Die Mehrlitzenspannglieder des System BBR VT CONA CMX werden mittels doppelwirkenden Zentrumslochpressen gespannt.

In der nachfolgenden Tabelle können die notwendigen Platzverhältnisse für die Pressen abgelesen werden. Es handelt sich dabei über die **minimalen Abmessungen für die Presse**. Wenn immer möglich sind diese Werte grösser anzusetzen.

	Platzbedarf für Spannpressen												
Spanngliedtyp	Pressentyp	Gewicht der Presse	min. Litzenüberstand	Abmessungen mm									
	,	kg	mm		В	С	L						
0106	UP24	30	750	150	650	70	1000						
0406	M 1090	90	750	170	650	150	1500						
0706	M 1700	180	850	230	700	200	1700						
1206	M 3000	340	950	260	750	240	2000						
1906	M 4800	760	1200	330	900	310	2500						
2206	M 4800	760	1200	330	900	310	2500						
3106	M 6800	1200	1300	400	1000	350	2600						

4.13. Werkgefertigte Spannglieder

Transport und Lagerung

Je nach Anwendung liefert die Stahlton AG werkgefertigte und/ oder baustellengefertigte Spannglieder. Die Werkfertigung bietet gegenüber der Baustellenfertigung folgende Vorteile:

- · kleinere Hüllrohrdurchmesser (und dadurch grössere statische Höhen) möglich
- · keine Probleme beim Einstossen der Litzen in die Hüllrohre
- · zeitlich flexibles Verlegen der Spannglieder für den Bauablauf
- · Flachhüllrohre und kleine Hüllrohrdurchmesser eignen sich nicht für Baustellenfertigung

Die Baustellenfertigung bietet gegenüber der Werkfertigung folgende Vorteile:

- Verlegarbeit beschränkt sich auf Leerhüllrohre und Verankerungen
- · Spanngliedlängen bis 120m können eingestossen werden
- · Reduzierter Einsatz der Hebegeräte

Der Werkfertigung sind Grenzen gesetzt, u. a. durch die Länge der Spannglieder, den Hüllrohrdurchmesser, Platzverhältnisse auf der Baustelle usw. In der Regel werden die Spannglieder auf Bobinen aufgerollt. Kleinere Spannglieder können auch lose, in Bündeln oder auf Haspelkreuzen angeliefert werden. Die Tabelle gibt Auskunft über die maximal möglichen Längen werkgefertigter Spannglieder. Die optimale Lieferform sollte nach Möglichkeit frühzeitig mit der Stahlton AG abgeklärt werden.

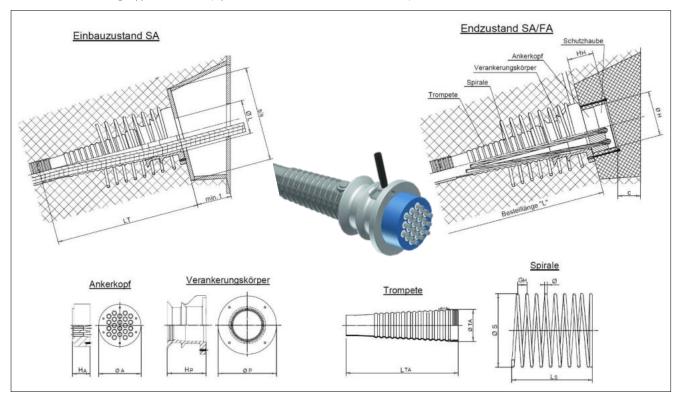
		Blechhüllrohr		Kunststoffhü	llrohr BBR VT	
	Körperlos	Во	bine	Bol	Kunststoffhüllrohr BBR VT Bobine grosse x B) 9200/160x70 Ø200/160x70 Ø230/170x108 < 80 m < 120 m < 95 m < 95 m	
Spanngliedtyp	Haspelkreuz	kleine	grosse	kleine	grosse	
		Abm	nessungen (ø _{aussen} /ø _{ir}	nnen x B)		
			cm			
	ø220/180x40	ø200/160x70	ø230/170x108	ø200/160x70	ø230/170x108	
		Monolitze	n-Spannglieder			
0106	< 200 m	< 300 m				
		Mehrlitze	n-Spannglieder			
0406		< 100 m		< 80 m		
0706		\ 100 III		V 00 III		
1206		< 70 m	< 150 m	< 50 m	< 120 m	
1506		\ 70 III	1 130 III	\ 30 III	\ 120 III	
1906		< 50 m	< 120 m		< 95 m	
2206		30111	, 120 111		· 55 III	
2706			< 70 m			
3106			, 70 111			

5. Verankerungstypen BBR VT CMX Kat.a & Kat.b

5.1. Übersicht der Verankerungstypen (Spann- und Festanker)

Folgende Verankerungstypen sind standardmässig erhältlich. Zudem beschreibt die Übersicht die Anwendbarkeit in Kombination mit den Spanngliedgrössen

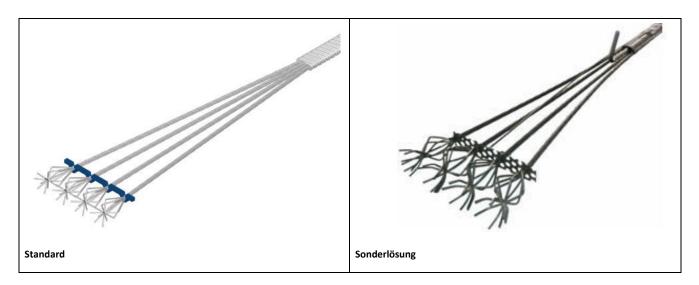
Bezeichnung	ETA / SIA	Spanngliedtyp Litze	Systemmerkmale Kategorie 1)	Spannankertyp Festankertyp	Kupplungstyp (Kap. 6ff)
BBR VT CONA CMI Typ CMI	ETA-06/0147 vom 30.10.17	0406 – 3106 Y1860S7-15.7	Kat. a, b Intern; im Verbund Runde, kompakte Mehrflächenanker (Ankertromplatten) Kat. c In modifizierter Ausführung (vgl. Kap. 7ff)	Kat. a, b Spannanker: Typ CMI SA (0406 – 3106) Festanker: Typ CMI FA (0406 – 3106) Kat. c In modifizierter Ausführung (vgl. Kap. 7ff)	Kat. a, b Feste Kupplung K: Bestandteile SK, FK (0406 – 3106) Feste Kupplung H: Bestandteile SH, FH (0406 – 3106) Bewegliche Kupplung BH: (0406 – 3106) Kat. c Nur Typ H in modifizierter Ausführung (vgl. Kap. 7ff)
BBR VT CONA CMF Typ CMF	ETA-12/0076 vom 14.12.17	0406 Y1860S7-15.7	Kat. a, b Intern; im Verbund Flacher, kompakter Mehrflächenanker (Ankertromplatte)	Kat. a, b Spannanker: Typ CMF SA 0406 Festanker: Typ CMF FA 0406	Kat. a, b Feste Kupplung H: Bestandteile SH, FH (0206 – 0406) und Bewegliche Kupplung: Typ BH 0406
BBR VT CONA CMO (CONA CMO) Typ C	ETA-15/0808 vom 22.02.16	0406 - 0606 Y1860S7-15.7	Kat. a, b Intern; im Verbund Festanker mit Zwiebeln CONA CMO wird nur gemeinsam mit einem CONA CMI, CMF Spannsystem verarbeitet	Kat. a, b Spannanker: Siehe CONA CMI, CMF Festanker: (0406 – 0606)	Kat. a, b Kopplung: Siehe CONA CMI, CMF



Bezeichnung	ETA / SIA	Spanngliedtyp Litze	Systemmerkmale Kategorie 1)	Spannankertyp Festankertyp	Kupplungstyp (Kap. 6ff)
BBR VT CONA Typ S	E+K-Nachweis nach SIA 262 Nr.004 Vom 09.02.17	0406 – 1206 Y1860S7-15.7	Kat. a, b Intern; im Verbund Festanker mit Schlaufen Verankerung Typ S kann gemeinsam mit einem CONA CMI, CMF Spannsystem verarbeitet	Kat. a, b Spannanker: Siehe CONA CMI, CMF Festanker: (0406 – 1206)	Kat. a, b Kopplung: Siehe CONA CMI, CMF
BBR VT CONA Typ P	E+K-Nachweis nach SIA 262 Nr.004 Vom 09.02.17	0406 – 3106 Y1860S7-15.7	Kat. a, b Intern; im Verbund Festanker mit Fächerverankerung & Presshülsen Verankerung Typ P kann gemeinsam mit einem CONA CMI, CMF Spannsystem verarbeitet	Kat. a, b Spannanker: Siehe CONA CMI, CMF Festanker P: (0406 – 3106)	Kat. a, b Kopplung: Siehe CONA CMI, CMF
BBR VT CONA CMM Typ CMM	ETA-06/0165 Vom 08.06.18	0106 (Single) Y1860S7-15.7	Kat. a, b Single (1 Litze): Intern; im Verbund und ohne Verbund Leichte Single Gussverankerungen	Kat. a, b Spannanker: Typ CMM SA Festanker: Typ CMM FA Festanker: Typ S	Kat. a, b Feste Kopplung Bestandteile SH, FH

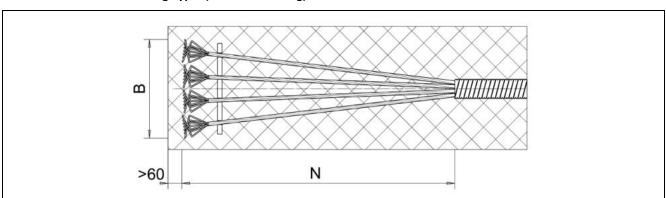
¹⁾ Nach der Norm SIA 262, Ziffer 3.4.2.2

Verankerung Typ CMI/CMF (Spannanker SA- und Festanker FA) 5.2.



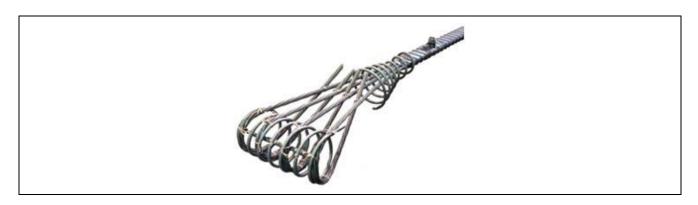
	Spanngliedtyp			0406	0406	0706	1206	1506	1906	2206	2706	3106
BBR VT COI	NA Bezeichnung			СМІ	CMF	СМІ	СМІ	СМІ	СМІ	СМІ	CI	MI
Länge der Verankerung	Ab Schalung	LT		300	420	430	625	695	695	800	97	75
Ankerkopf	Durchmesser	ØA		100	100	130	160	200	200	225	25	55
Alikerkopi	Höhe	H _A		50	50	55	65	75	85	95	11	10
Verankerungs-	Durchmesser	Øρ		130	145/100	170	225	280	280	310	36	50
körper	Höhe	H _P		120	120	130	150	195	195	205	25	50
Tuessanata	Durchmesser	ØTA		72	72	88	127	153	153	170	19	91
Trompete	Länge	L _{TA}		180	300	300	475	500	500	595	72	25
	Durchmesser	Øs	mm	155	240/130	200	250	325	325	340	43	30
Spirale	Länge	Ls		185	285	231	282	382	382	382	43	32
(Masstoleranzen gemäss SIA 262)	Stabdurchmesser	ø		10	10	12	14	14	14	14	1	.4
	Ganghöhe	Gн		45	45	50	50	50	50	50	5	0
Calcutaliant	Durchmesser	Øн		102	102	134	168	208	208	233	26	53
Schutzhaube	Höhe	Нн		90	70	90	95	115	115	125	14	40
	Abschalfläche	s/s		220	220	280	380	430	450	500	55	50
	Loch in Schalung	ØL		70	70	100	130	160	160	180	20	00
Einbau	Nischentiefe	t		90 + c	90+c	90 + c	100 + c	115	+ c	125 + c	140) + c
	Gewicht	-	kg	8	8	14	28	45	50	64	10	01

Legende: **c** = min. Bewehrungsüberdeckung (ca.60 mm) Alle Werte gelten für Betonfestigkeit C30/37

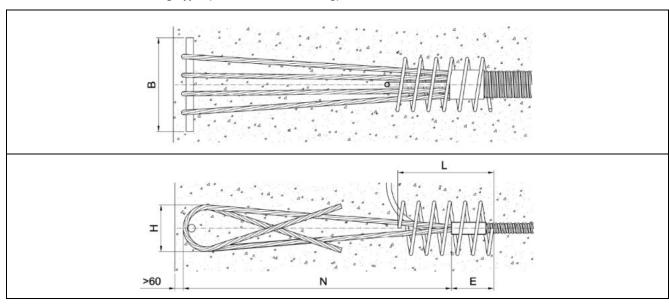


5.3. Feste Verankerung Typ CMO

Bei der Verankerung Typ C wird das Spannglied durch den **Haftverbund der Litzen im umgebenden Beton verankert**. Um eine optimale Verbundwirkung zu erzielen, werden die Litzenenden aufgestaucht.


Dimension Feste Verankerung Typ C (Haftverankerung)

Spanngliedty	p			0406	0606	1206	1506	1906	2206	2706	3106
	Breite	В		400	600						
	Höhe	Н	mm	100	100		Auf Anfrage				
	Länge der Verankerung	N		1200	1200						
Einbau	Verlegegewicht	-	kg	2	3						



5.4. Feste Verankerung Typ S

Bei der Schlaufenverankerung S werden die **Litzenenden zu Schlaufen** gebogen. Die Spreizung der Litzen wird durch eine Spirale gewährleistet.

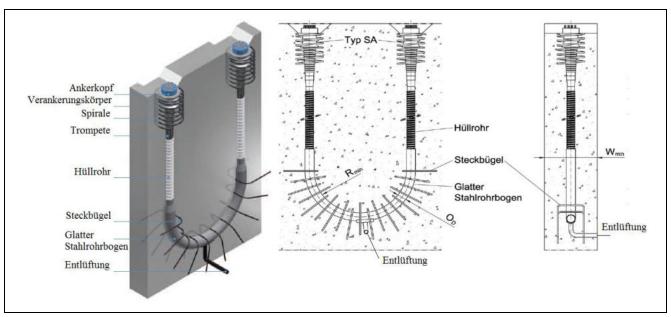
Dimension Feste Verankerung Typ S (Schlaufenverankerung)

	Spanngliedtyp			0406	0706	1206
	Breite	В		300	480	400
Schlaufe	Höhe	Н	mm	155	155	400
	Länge der Verankerung	N		900	900	900
	Aussendurchmesser	øa		175	175	220
	Länge	L		350	350	335
Spirale	Abstand	E	mm	100	100	100
	Stabdurchmesser	Ø		10	10	14
	Ganghöhe	GH		40	40	50
Einbau	Verlegegewicht	-	kg	7	10	18

5.5. Feste Verankerung Typ P

Die Fächerverankerung Typ P ist eine Verbundverankerung bei welcher mit normaler Verbundhaftung ca. 80 % der Kraft über die Verbundlänge N ins Bauwerk eingeleitet wird. **Die verbleibende Kraft wird über die Keilhülsen auf den einzelnen Litzen in die Ankerplatte übertragen**. Die Platten sind standartmässig rechteckig, können aber bei kleineren Kräften auch quadratisch ausgebildet werden.

Dimension Feste Verankerung Typ P (Flächenverankerung)


	Spanngliedtyp				0706	1206	1506	1906	2206	2706	3106
	Quadratisch	B / B		145	230	-	-	-	-	-	-
Ankerplatte	Breite	В	mm	260	270	280	350	370	420	480	480
	Höhe	Н		90	140	230	230	280	280	300	350
	Länge der Verankerung	N		500	500	600	700	700	800	900	900
	Aussendurchmesser	øa		175	175	260	300	325	325	420	420
	Länge	L		350	350	280	320	350	390	390	390
Spirale	Abstand	Е	mm	100	100	60	60	60	60	70	70
	Stabdurchmesser	ø		10	10	12	12	14	14	16	16
	Ganghöhe	GH		40	40	50	50	50	50	50	50
Einbau	Verlegegewicht	-	kg	7	12	20	25	35	38	50	55

5.6. Umlenkverankerung Typ U

Umlenkverankerungen werden oft benötigt, wenn kein Zugang für ein festes Ende des Spannglieds gegeben ist - zum Beispiel in Behältern oder Silos. Der gerade Teil des Kabels befindet sich dabei in den Wänden und der gekrümmte Teil in der Gründung. Durch den stark reduzierten Umlenkradius ist der Anpressdruck zwischen Litze und Hüllrohr sehr hoch. Der gebogene Abschnitt des Spannglieds besteht aus glattem Stahlrohr.

Dimensionen Feste Verankerungen Typ U (Umlenkverankerung)

Spanng	Spanngliedtyp					1906	2206	2406	3106			
Bogenradius	R _{min}	m	0.8	0.9	1.2	1.4	1.5	1.6	1.8			
				Blechhüllrohre								
Hüllrohrtyp			54/60	66/72	84/90	97/103	106/112	115/121	129/135			
Stahlrohrbogen	øaussen	mm	70	82.5	101.6	114.3	127	133	152.4			
						Kunststoffhüllrohre						
Hüllrohrtyp	BBR V	Т	50	60	75	100	115	115	130			
Stahlrohrbogen	øaussen	mm	60.3	70	88.9	121	133	133	152.4			

Die minimalen Wandstärken W_{min} für den glatten Stahlrohrbogen werden im Allgemeinen durch

die minimalen Randabstände der Spannverankerung vorgegeben.

Sie soll jedoch in jedem Fall ≥ (3*O_D) betragen.

Zur Aufnahme der Spaltzugkräfte sind Steckbügel anzuordnen mit einem Bemessungswiderstand

von $Z_{Rd} = A_s * n * f_{sd} \ge 0.25 * \pi * P_d (1 - 0.87 * O_D/W)$

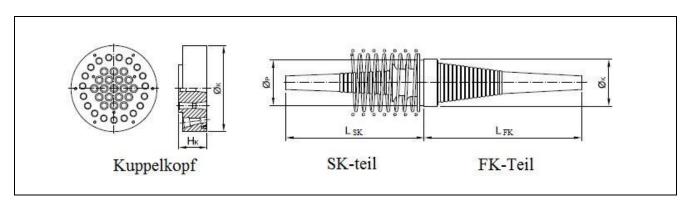
und für kleine Werte O_D/W : Z_{Rd} = A_s * n * f_{sd} ~ 0.8 * (1.5 * $F_{pm0})$ ~ 1.2 * F_{pm0} . Legende:

As- Querschnittsfläche eines Steckbügels ($\phi^2 * \pi/4$)

n- Anzahl Steckbügel

fsd- Bemessungswert der Fliessgrenze von Betonstahl

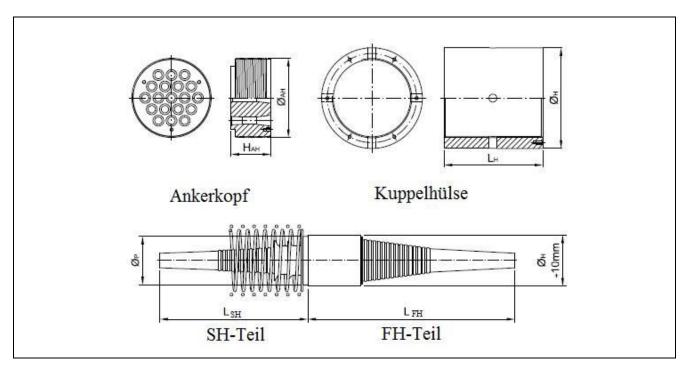
Seite 32/38



6. Kupplungen BBR VT CONA CMI; Kat.a & Kat.b

6.1. Kupplung K (Kopplungskörper)

Die Kupplung K ist eine Übergreifungskupplung, bei der die Litzen des neuen und des existierenden Spannkabels im selben Kuppelkopf verankert werden. Die Kupplung befindet sich an der Betonierfuge zwischen der bereits bestehenden und der folgenden Bauetappe. Die Litzen des anzukuppelnden Kabels werden dabei in den Kuppelkopf des gespannten Kabels eingestossen und dort fixiert.

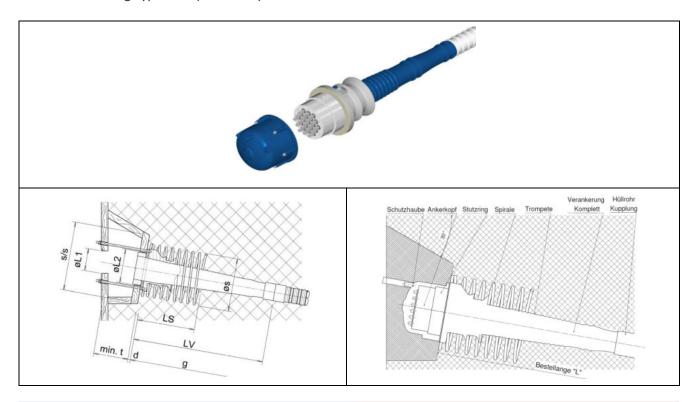

	Spanngliedtyp				0706	1206	1506	1906	2206	2706	3106
Kupplung K	Durchmesser	Øκ	mm	185	205	240	290	290	310	390	
	Höhe	Hĸ	mm	85	85	90	90	95	105	120	
FK -Teil	Länge	L _{FK}	mm	550	720	815	975	865	940	11	70
	Trompete	ØFK		185	203	240	275	275	305	375	
	Verlegegewicht	-	kg	17	21	31	45	48	60	13	18
	Länge	Lsĸ	na na	300	430	625	695	695	800	97	75
SK- Teil (vgl. 5.1)	Verankerung	Øта	mm	72	88	127	153	153	170	19	91
	Verlegegewicht	-	kg	8	14	28	39	39	64	10	01

6.2. Kupplung H (Hülsenkupplung)

Bei der Hülsenkupplung H werden die Ankerköpfe des bestehenden und des neuen Spannglieds durch eine Kuppelhülse miteinander verbunden. Die Ankerköpfe sind mit einem Aussengewinde versehen, und die Hülse wird auf beide Köpfe aufgeschraubt.

Spanngliedtyp					0706	1206	1506	1906	2206	2706	3106
Kupplungs-	Durchmesser	Øн		133	170	213	259	269	296	330	
Hülse	Länge	L _H	mm	180	200	230	240	270	270	320	
	Länge	L _{FH}	mm	650	650	820	1045	1045	1170	13	50
FH- Teil	Trompete	Ø _{FH}		185	203	240	275	275	305	37	75
	Verlegegewicht	-	kg	15	28	53	80	80	124	16	55
	Länge	L _{SH}		300	430	625	695	695	800	97	75
SH-Teil (vgl. 5.1)	Verankerung	Ø та	mm	72	88	127	153	153	170	19	91
	Verlegegewicht	-	kg	8	14	28	45	50	64	10)1

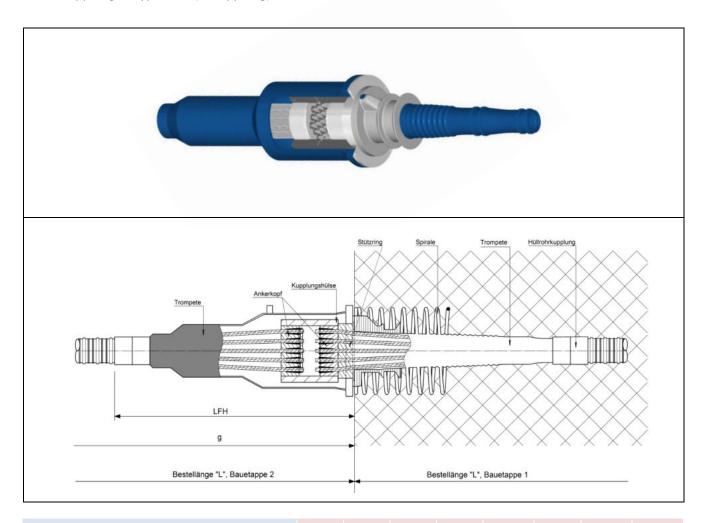
Die Kupplung **H kann ebenfalls als bewegliche Kopplung (BH) ausgeführt werden**. Auch hier wird wie beim Kupplungstyp **BH** die Länge des Stahlblechzylinders an die zu erwartenden Dehnwege angepasst.



Spanngliedtyp					0706	1206	1506	1906	2206	2706	3106			
Bewegliche Kupplung BH														
V. madama DII	Durchmesser	øВН		145	180	225	270	280	310	345	350			
Kupplung BH	Länge	L_{BH}	mm	Variable je nach Länge Spannglied										

7. Verankerungen BBR VT CMI E Kat. c (Elektrisch Isolierte Spannglieder)

7.1. Verankerung Typ CMI E (SA und FA)


Spanngliedtyp				0406	0706	1206	1506	1906	2206	2706	3106
Länger der Verankerung	Ab Schalung	L_V		345	460	600	770	770	900	1050	
Ankerkopf	Durchmesser	ØΑ		100	130	160	200	200	225	255	
Апкегкорі	Höhe inkl. Stützring	HA		110	115	130	150	150	160	175	
Varankarııngakärnar	Durchmesser	ØΡ		145	170	225	280	280	310	360	
Verankerungskörper	Höhe	HP		120	130	150	195	195	205	250	
Trompete	Durchmesser	Øτ		75	88	127	153	153	170	191	
Trompete	Länge	L _{TA}		225	330	450	575	575	695	800	
	Durchmesser	Øs		155	200	250	325	325	340	430	
Spirale	Länge	Ls		185	231	282	382	382	382	432	
Spirale	Stabdurchmesser	Ø	mm	10	12	14	14	14	14	14	
	Ganghöhe	Gн		45	50	50	50	50	50	50	
Schutzhaube	Durchmesser	Øн		120	150	200	270	270	270	3	00
Schutzhaube	Höhe	Нн		180	190	200	240	240	240	2	70
	Abschalfläche	s/s		220	280	380	430	450	500	5	50
	Dichtungsplatte	d		20	20	20	20	20	20	2	20
	Loch in Schalung	Ø _{L1}		110	140	180	230	230	250	2	90
Einbau	Locii iii Schaldiig	ØL2		70	100	130	160	160	180	2	00
	Nischentiefe	t		180 + c	190 + c	220 + c	240) + c	240 + c	270) + c
	Gewicht	-	kg	10	14	28	45	50	64	1	01

Legende: **c** = min. Bewehrungsüberdeckung (z.B.60 mm)

Alle Werte gelten für Betonfestigkeit C30/37

7.2. Kupplungen Typ CMI E (H-Kupplung)

Spanngliedtyp					0706	1206	1506	1906	2206	2706	3106
Kupplungs-	Durchmesser	Øн	mm	133	170	213	259	269	296	330	
Hülse	Länge	L _H	mm	180	200	230	240	270	270	320	
FH -Teil 2. Bauetappe	Länge	L _{FH}	mm	650	650	820	1045	1045	1170	13	50
	Trompete	Ø _{FH}		185	225	250	315	315	355	40	00
	Verlegegewicht	-	kg	15	28	53	79	100	124	16	55
SH- Teil	Länge	L _{SH}	mm	345	460	600	770	770	900	10	50
(wie SA) 1. Bauetappe	Trompete	Øsн	111111	75	88	127	153	153	170	19	91
	Verlegegewicht	-	kg	10	14	28	45	50	64	10	01

7.3. Spezielle Hinweise für Spannglieder Kat. c

Grundsätzlich verweisen auf die Richtlinie *Massnahmen zur Gewährleistung der Dauerhaftigkeit von Spanngliedern in Kunststbauten*. Herausgegeben vom Bundestamt für Strassen ASTRA/OFROU in Zusammenarbeit mit SBB AG. Ausgabe 2007 V2.00.

Die als Kat. c konfektionierten Spannglieder weisen per se den bestmöglichen Schutz in Bezug auf jegliche Korrosionsgefährdungen auf. So wird durch diverse zusätzliche Massnahmen eine vollständige elektrotechnische Trennung zwischen Spannstahl und Beton herbeigeführt. Die erforderliche elektrische Isolation wird durch eine vollständige Kunststoffummantelung erreicht. Der nachhaltige Erfolg in Bezug auf die Überwachbarkeit / Messbarkeit der elektrotechnischen Trennung erfordert ein optimales Zusammenspiel aller Beteiligten. Es sind dies nebst dem Spannglied-Systemlieferanten, der zuständige Projektverfasser und der Hauptunternehmer inkl. Subunternehmer (Eisenleger).

7.4. Messeinrichtungen

Grundsätzlich wird für die Konzeption der Messeinrichtung zwischen Objekten mit und ohne Streustromgefährdung unterschieden. Zur Sicherstellung des Gefährdungssituation empfehlen sich Streustrommessungen bereits in der Projektierungsphase.

Einseitiger Anschluss: Hauptkriterien: Ermüdung und Überwachung Beidseitiger Anschluss: Hauptkriterien: Streustromgefährdung

Messkasten

Die Messkästen sollen gut zugänglich positioniert werden, um eine behinderungslose Überwachung während der Nutzungsdauer zu gewährleisten.

- · In die Messkästen werden i.A. nur Messkabel von 2.5 mm² eingeführt.
- · Aufputzlösungen sind grundsätzlich einfacher zu installieren.
- Nischenlösungen müssen frühzeitig gut geplant werden.
- In jedem Fall sind Positionierungen zu wählen, welche einen guten Schutz vor direkter Bewitterung gewährleisten.

Anschlusskasten

Die Anschlusskästen dienen dazu, die Anschlusskabel mehrerer Spannglieder zusammenzuführen. Sie werden (beidseitig) in der Nähe der Spanngliedköpfe positioniert, um längenabhängigen Querschnitte der Anschlusskabel zu begrenzen. Die Widerstandsmessung kann direkt im Anschlusskasten erfolgen, oder, falls erwünscht, an verlängerten Messleitungen in einem zentralen Messkasten.

- In die Anschlusskästen werden i.A. Elektrokabel von 10 mm² bis 25 mm² eingeführt.
- · Aufputzlösungen sind grundsätzlich einfacher zu installieren.
- Nischenlösungen müssen frühzeitig gut geplant werden.
- In jedem Fall sind Positionierungen zu wählen, welche einen guten Schutz vor direkter Bewitterung gewährleisten.
- Spannglieder mit ungenügenden Messwerten, können hier an die Erdung angeschlossen werden.