

Technique de précontrainte Systèmes de câbles de précontrainte à torons

Documentation d'application à l'usage des chargés de projets

Système de précontrainte à torons BBR VT CONA CMX

BBR VT CONA CMI – Câbles de précontrainte multitorons avec ancrages ronds à redans BBR VT CONA CMF – Câbles de précontrainte à 4 torons avec ancrages plats à redans BBR VT CONA CMM Single – Câbles de précontrainte monotorons

Table des matières

1.	Introduction	3
1.1.	Préambule	3
1.2.	UTILISATION DES DOCUMENTS	3
1.3.	STRUCTURE D'UN CÂBLE DE PRÉCONTRAINTE BBR VT CONA CMX	4
2.	Caractéristiques techniques des câbles de précontrainte BBR VT CMX	6
2.1.	Torons en acier	6
2.2.	DIMENSIONS DES CÂBLES DE PRÉCONTRAINTE	7
3.	GAINES	8
3.1.	Gaine métallique profilée de catégorie a	8
3.2.	RAYONS DE DÉVIATION MINIMAUX ET EXCENTRICITÉS DU CÂBLE POUR GAINES MÉTALLIQUES CYLINDRIQUES, CATÉGORIE A	9
3.3.	RAYONS DE DÉVIATION MINIMAUX ET EXCENTRICITÉS DU CÂBLE POUR GAINES MÉTALLIQUES PLATES, CATÉGORIE A	10
3.4.	Gaine profilée en matière plastique BBR VT, catégories b/c	10
3.5.	RAYONS DE DÉVIATION MINIMAUX ET EXCENTRICITÉS DU CÂBLE POUR GAINES CYLINDRIQUES EN PLASTIQUE, CATÉGORIES B/C	11
3.6.	RAYONS DE DÉVIATION MINIMAUX ET EXCENTRICITÉS DU CÂBLE POUR GAINES PLATES EN PLASTIQUE, CATÉGORIES B/C	12
4.	Indications pour la mise en projet	12
4.1.	CATÉGORIES DE PROTECTION CONTRE LA CORROSION	12
4.2.	Protection contre la corrosion	12
4.3.	Pertes de force de précontrainte	13
4.4.	MISE EN TENSION	15
4.5.	Taux de remplissage et excentricité du câble de précontrainte	15
4.6.	SEGMENT RECTILIGNE MINIMAL DE PART ET D'AUTRE DES ANCRAGES	16
4.7.	SUPPORTS DE CÂBLES	17
4.8.	RÉSISTANCES DU BÉTON LORS DE LA MISE EN TENSION	19
4.9.	Application et déviation des forces	19
4.10.	Armature dans la zone d'ancrage	21
4.11.	DISTANCES AUX BORDS ET ENTRAXES	22
4.12.	Place requise pour la mise en tension	24
4.13.	Câbles de précontrainte fabriqués en usine	25
5.	Types d'ancrages BBR VT CMX catégories a et b	26
5.1.	APERÇU DES TYPES D'ANCRAGES (ANCRAGES MOBILES ET FIXES)	26
5.2.	ANCRAGE TYPE CMI/CMF (ANCRAGE MOBILE SA ET ANCRAGE FIXE FA)	28
5.3.	Ancrage fixe type CMO	29
5.4.	ANCRAGE FIXE TYPE S	30
5.5.	Ancrage fixe type P	31
5.6.	Ancrage de renvoi type U	32
6.	Coupleurs BBR VT CONA CMI ; CATÉGORIES A ET B	33
6.1.	Coupleur K (corps de couplage)	33
6.2.	Coupleur H (accouplement à manchon)	34
7.	Ancrages BBR VT CMI E catégorie c (câbles isolés électriquement)	36
7.1.	ANCRAGE TYPE CMI E (SA ET FA)	36
7.2.	Coupleurs type CMI E (Accouplement H)	37
7.3.	Consignes spécifiques applicables aux câbles de la catégorie c	38
7.4.	DISPOSITIFS DE MESURE	38

Introduction 1.

1.1. Préambule

Depuis un certain temps, Stahlton AG utilise avec succès le système de câbles de précontrainte à torons BBR VT CONA CMX. Homologué en Europe, ce système est conforme aux plus récentes normes internationales et a déjà démontré ses avantages dans un grand nombre d'ouvrages en Suisse et dans le monde entier.

Le système a été modifié pour répondre aux besoins spécifiques de la Suisse et certifié conformément aux prescriptions de la SIA, et l'assortiment a été étendu et adapté en conséquence. Sa polyvalence permet aux ingénieurs et aux entreprises de construction d'utiliser facilement le système BBR VT CONA CMX lors de la mise en projet et de l'exécution de leurs structures porteuses précontraintes.

1.2. Utilisation des documents

La présente brochure est une compilation, destinée au marché suisse, des bases de travail requises pour la planification et le dimensionnement des systèmes de câbles de précontrainte à torons BBR VT CONA CMX.

Pour de plus amples informations, on se référera aux documents suivants :

Homologations / agréments techniques

Systèmes multitorons

- Certificat d'aptitude et de conformité selon SIA 262 n° 004
- Evaluation technique européenne, ETA-06/147, BBR VT CONA CMI
- Evaluation technique européenne, ETA-12/0076, BBR VT CONA CMF (Ancrages spéciaux pour câbles de précontrainte à 4 torons)
- Evaluation technique européenne, ETA-150808, BBR VT CONA CMO (ancrage par adhérence pour ancrages fixes)

Systèmes monotorons

- Certificat d'aptitude et de conformité selon norme SIA 262 n° 005
- Evaluation technique européenne, ETA-12/0282, BBR VT CONA CMM

Normes et directives

- Normes SIA déterminantes, notamment SIA 260, 261, 262, 262/1.
- Directive « Dispositions pour garantir la durabilité des câbles de précontrainte dans les ouvrages d'art », ASTRA/ OFROU 12 010.

Dessins système / CAO

Le lecteur trouvera sur notre site internet les ancrages actuels à télécharger pour son propre usage.

Nos conseillers Stahlton se feront un plaisir de répondre à vos questions relatives à la technique de précontrainte :

Stahlton AG Wässeristrasse 29 CH-8340 Hinwil/ZH

Stahlton AG

Téléphone: +41 44 938 99 00

Téléphone: +41 71 282 38 82

Martinsbruggstrasse 65 CH-9016 St. Gallen/SG

Stahlton AG Mariahilfstrasse 51 CH-1712 Tafers/FR

Téléphone: +41 26 494 58 58

Stahlton AG Hauptstrasse 11 CH-5070 Frick/AG

Téléphone: +41 62 865 76 00

Stahlton AG

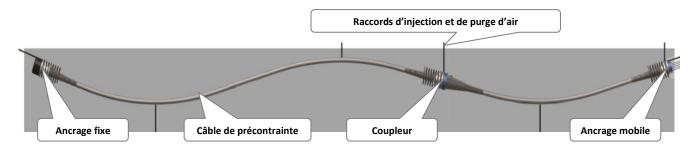
Strada Cantonale 23 6805 Mezzovico/TI

Téléphone: +41 91 935 94 30

Page d'accueil: www.stahlton-bautechnik.ch Email: bautechnik@stahlton.ch

Edition 06/2020 Documentation d'application pour chargés de projets Technique de précontrainte BBR VT CONA CMX

Page 3/38


1.3. Structure d'un câble de précontrainte BBR VT CONA CMX

Le système BBR VT CONA **CMX** (**CMI** et **CMF**) rassemble tous les autres systèmes de la même famille. Il s'agit d'un **système multitorons** conçu pour l'application de la précontrainte par adhérence des catégories de protection contre la corrosion a et b. Le BBR VT CONA **CMI E** est un système multitorons destiné à des applications de la catégorie de protection contre la corrosion c. Le CONA **CMM** est un système monotoron destiné aux catégories de protection contre la corrosion a et b.

Les principales composantes du système de précontrainte sont brièvement expliquées ci-après :

Câble de précontrainte

Le câble de précontrainte se compose d'un certain nombre de torons en acier de précontrainte de haute qualité, adapté à l'utilisation prévue, et d'une gaine qui l'enveloppe et qui est remplie de matériau d'injection (coulis) après l'application de la force de précontrainte. A leurs deux extrémités, les torons sont réunis de manière solidaire dans une tête d'ancrage.

Ancrage fixe

Dans la plupart des cas, un ancrage fixe est monté à une extrémité du câble de précontrainte. L'application de la force peut se faire via un corps d'ancrage ou un ancrage par adhérence.

Ancrage mobile

Les câbles de précontrainte sont mis en tension au moyen des ancrages mobiles. L'application de la force se fait toujours via un corps d'ancrage. Lorsque l'ancrage est réalisé avec des clavettes annulaires, les torons sont enfilés dans la tête d'ancrage par glissement.

Le type d'ancrage est caractérisé par des désignations spécifiques (CMI, CMF, CMM, etc.).

Les armatures en spirale et de renfort ne sont pas dessinées!

Coupleurs

Les coupleurs peuvent être utilisés pour relier entre eux, de manière solidaire, des câbles de précontrainte de différentes étapes de montage et de mise en tension. Une distinction est faite entre les coupleurs fixes et mobiles.

Gaines

Les gaines enveloppent le faisceau des torons en acier de précontrainte. On distingue ici les gaines métalliques et les gaines en matière plastique.

Mortier d'injection / coulis de remplissage

Le mortier d'injection, associé au choix de la gaine, constitue un élément central de la protection du câble de précontrainte contre la corrosion.

Armature de renfort

Du fait de la propagation des efforts, des forces d'about et de traction transversales significatives se produisent dans les zones d'ancrage. Ces efforts de traction doivent être repris par une armature de renfort efficace. Les modèles basés sur l'Evaluation technique européenne (ETE) nécessitent toujours une armature de renfort en plus de la spirale.

2. Caractéristiques techniques des câbles de précontrainte BBR VT CMX

2.1. Torons en acier

Seuls les torons en acier à 7 fils avec une résistance à la traction de 1860 N/mm² et une section de 150 mm² sont utilisés pour le **système BBR VT CONA CMX**. On admet cependant aussi les torons en acier à 7 fils dotés d'une résistance à la traction de 1860 N/mm² et présentant une section de 140 mm². Le tableau ci-dessous précise les propriétés caractéristiques de l'acier de précontrainte utilisé.

Toron en acier à 7 fils

Désignation du type de toron	-	Y18609	57-15.7
Diamètre nominal	ø	15.7 (0.6")	mm (pouces)
Aire de la section	A_p	150	mm2
Résistance à la traction	f _{pk}	1860	N/mm2
Limite d'élasticité	f _{p0.1k}	1600	N/mm2
Module élastique (valeur nominale)	Ep	195	kN/mm2
Allongement en charge maximale (valeur minimale)	ε _{uk}	3.5	%
Résistance à la fatigue (2 mio. d'inversions de charge, contrainte supérieure $0.7xf_{pk}$)	Δ6 _{p,fat}	190	N/mm2
Relaxation (après 1000 heures, tension initiale 0.7xf _{pk})	Δ6 _{pr}	2.5	%
Effort de rupture	F _{pk}	279	kN

Torches de torons

Ancrages mobiles

2.2. Dimensions des câbles de précontrainte

Les câbles de précontrainte standards sont constitués de 1, 4, 7, 12, 15, 19, 22, 27 et 31 torons. Des valeurs intermédiaires sont possibles, mais en utilisant la tête d'ancrage immédiatement supérieure et en réduisant le nombre de torons.

Type de câble	Nombre de torons	Poids	Surface	Force de rupture	Valeur de dimensionnement	Forces de pr	écontrainte				
	Y1860 S7-15.7	G	Ap	f_{pk} = 1860 N/mm ²	F_{pRd} $f_{pd} = 1390 \text{ N/mm}^2$	Force de surtension $P_{max} = 0.75xF_{pk}$	Force de blocage $P_0 = 0.7xF_{pk}$				
	pce	kg/m	mm ²	kN	kN	kN	kN				
Câbles de précontrainte monotorons											
0106	1	1.2	150	279	208	209	195				
Câbles de précontrainte multitorons											
	2	2.4	300	558	417	419	391				
0406	3	3.5	450	837	626	628	586				
	4	4.7	600	1116	834	837	781				
	5	5.9	750	1395	1043	1046	977				
0706	6	7.1	900	1674	1251	1256	1172				
	7	8.3	1050	1953	1460	1465	1367				
	8	9.4	1200	2232	1668	1674	1562				
	9	10.6	1350	2511	1877	1883	1758				
1206	10	11.8	1500	2790	2085	2093	1953				
	11	13.0	1650	3069	2294	2302	2148				
	12	14.2	1800	3348	2502	2511	2344				
	13	15.3	1950	3627	2711	2720	2539				
1506	14	16.5	2100	3906	2919	2930	2734				
	15	17.7	2250	4185	3128	3139	2930				
	16	18.9	2400	4464	3336	3348	3125				
4005	17	20.1	2550	4743	3545	3557	3320				
1906	18	21.2	2700	5022	3753	3767	3515				
	19	22.4	2850	5301	3962	3976	3711				
	20	23.6	3000	5580	4170	4185	3906				
2206	21	24.8	3150	5859	4379	4394	4101				
	22	26.0	3300	6138	4587	4604	4297				
	23	27.1	3450	6417	4796	4813	4492				
	24	28.3	3600	6696	5004	5022	4687				
2706	25	29.5	3750	6975	5213	5231	4883				
	26	30.7	3900	7254	5421	5441	5078				
	27	31.9	4050	7533	5630	5650	5273				
	28	33.0	4200	7812	5838	5859	5468				
	29	34.2	4350	8091	6047	6068	5664				
3106	30	35.4	4500	8370	6255	6278	5859				
	31	36.6	4650	8649	6464	6487	6054				
				àbles de précontrain							
0406-FL	4	4.7	600	1116	834	837	781				
0606-FL	6	7.1	900	1674	1251	1256	1172				

3. Gaines

Lors du choix du diamètre d'une gaine, il est avantageux de savoir si les câbles de précontrainte peuvent être fabriqués en usine ou s'ils doivent être fabriqués sur le chantier. Les câbles fabriqués en usine autorisent généralement des gaines d'un diamètre plus petit, ce qui permet d'atteindre une plus grande hauteur statique. Le lecteur trouvera plus d'informations sur la possibilité de fabrication en usine au chapitre 4.13. (câbles de précontrainte fabriqués en usine).

Gaine métallique profilée de catégorie a

Les gaines métalliques profilées sont formées à partir de feuillards d'acier conformément à la norme EN 523 et peuvent être fabriquées comme gaines normales (tubes cylindriques) pour un grand nombre de diamètres et comme gaines plates dans les dimensions 21/80-FL (jusqu'à 4 torons) et 28/110-FL (jusqu'à 6 (7) torons). Selon leurs dimensions et leur utilisation, les gaines métalliques ont une épaisseur de paroi de 0,3 à 0,4mm.

Gaines métalliques cylindriques

Gaines métalliques plates

Gain	Gaines métalliques cylindriques										
Type de gaine	Øi	$\mathbf{Ø}_{a}$	t								
Type 41	44	46	0.30								
Type 51	51	56	0.30								
Type 54	54	59	0.30								
Type 60	60	65	0.30								
Type 66	66	72	0.32								
Type 75	75	80	0.35								
Type 80	80	85	0.35								
Type 85	85	90	0.35								
Type 88	88	93	0.35								
Type 95	95	102	0.40								
Type 105	105	112	0.40								
Type 115	115	122	0.40								
Type 120	120	127	0.40								
Type 127	130	137	0.40								

Gaines métalliques plates									
Type de gaine h _i /h _a b _i /b _a									
Type 21x80 FL	21/25	80/84	0.30						
Type 28x110 FL	28/32	110/114	0.30						

Légende: toutes les dimensions en mm

diamètre intérieur diamètre extérieur épaisseur de la paroi

3.2. Rayons de déviation minimaux et excentricités du câble pour gaines métalliques cylindriques, catégorie a

Type de câble	Nombre de torons	Force de blocage	Câbles de précontrainte fabriqués en USINE				les de précont ués sur des CH	
	Y1860 S7-15.7	$P_0 = 0.7xF_{pk}$	Type de gaine Ø _i /Ø _a	Excentricité e	Rayon minimal R _{min}	Type de gaine Øi/Øa	Excentricité e	Rayon minimal R _{min}
	pce	kN	-	mm	m	-	mm	m
			Câbles de ¡	orécontrainte n	nultitorons			
	2	391		17			18	
0406	3	586	51/57	13	2.50	54/60	16	2.50
	4	781		10			13	
	5	977		13			18	
0706	6	1172	60/65	10	4.00	66/72	15	3.25
	7	1367		9			13	
2025	8	1562	75 (00	18	4.20	00/05	18	2.70
0906	9	1758	75/80	16	4.20	80/85	16	3.70
	10	1953		14			17	
1206	11	2148	75/80	13	5.00	80/85	15	4.70
	12	2344		12			14	
	13	2539	85/90	14			20	
1506	14	2734		13	5.50	95/102	19	5.00
	15	2930		12			18	
	16	3125		15	6.25	95/102	18	6.00
	17	3320		15			17	
1906	18	3515	95/102	14			16	
	19	3711		13			15	
	20	3906		14			18	
2206	21	4101	95/102	13	7.00	105/112	17	6.40
	22	4297		13			17	
2400	23	4492	105/112	17	7.60	445/422	22	7.20
2406	24	4687	105/112	16	7.60	115/122	20	7.20
	25	4883		15			19	
2706	26	5078	105/112	14	7.80	115/122	18	7.20
	27	5273		13			17	
	28	5468		18			25	
	29	5664	445/122	17	0.05	420/42=	24	7.0-
3106	30	5859	115/122	16	8.25	130/137	23	7.35
	31	6054		15			22	

3.3. Rayons de déviation minimaux et excentricités du câble pour gaines métalliques plates, catégorie a

Type de câble	Nombre de torons	Force de blocage	Câbles de précontrainte fabriqués en USINE et sur des CHANTIERS					
	Y1860 S7-15.7	$P_0 = 0.7xF_{pk}$	Type de gaine h _i xb _i	Excentricité e	Rayon minimal vertical R _{v,min}	Rayon minimal horizontal R _{h,min}		
	pce	kN	-	mm	m	mm		
			Câbles de précont	rainte plats				
	2	391			2.50	6.00		
0406 FL	3	586	21x80 FL	3				
	4	781						
0606 EI	5	977	30v110 FI	6	2.50	9.00		
0606 FL	6	1172	28x110 FL	O	3.50	8.00		
0706 FL*	7	1367	28x110 FL	6	3.50	10.00		

^{*0706} FL : réalisable jusqu'à une longueur maximale de câble de 20 m!

3.4. Gaine profilée en matière plastique BBR VT, catégories b/c

Gaine profilée en matière plastique selon le Bulletin fib 75 et EAD. La gaine en matière plastique cylindrique BBR VT est disponible dans les diamètres nominaux de 50 à 130 mm, les gaines plates le sont dans les dimensions de 2 à 4 torons. La gaine est constituée d'un matériau spécial qui permet son utilisation à des **températures de -20° à +50°C**.

Gaines cylindriques en matière plastique											
Type de gaine	Øi	$\mathbf{Ø}_{a}$	Ø _r	t	d _r						
BBR VT 25	23	27	37	2.0	40						
BBR VT 50	48	52	59	2.0	28						
BBR VT 60	59	63	73	2.0	42						
BBR VT 75	76	81	91	2.5	52.5						
BBR VT 100	100	106	116	3.0	39.5						
BBR VT 115	115	122	135	3.5	39.5						
BBR VT 130	129	137	152	4.0	40.5						

Gaines plates en matière plastique										
Type de gaine	Type de gaine h _i /h _a b _i /b _a h _r /b _r t d _r									
BBR VT 21x72 21/25 71/75 36/86 2.0 40										

Légende : toutes les dimensions en mm

 $\begin{array}{ll} h_i/h_a & \text{dimension intérieure / extérieure de la hauteur} \\ b_i/b_a & \text{dimension intérieure / extérieure de la largeur} \\ h_r/b_r & \text{dimension des nervures hauteur / largeur} \end{array}$

d_r espacement des nervures

3.5. Rayons de déviation minimaux et excentricités du câble pour gaines cylindriques en plastique, catégories b/c

Type de câble	Nombre de torons	Force de blocage		les de précontra abriqués en USI			les de précontr ués sur des CH <i>l</i>					
	Y1860 S7-15.7	$P_0 = 0.7xF_{pk}$	Type de gaine Ø _i /Ø _a	Excentricité e	Rayon minimal R _{min}	Type de gaine Øi/Øa	Excentricité e	Rayon minimal R _{min}				
	pce	kN	-	mm	m	-	mm	m				
	Câbles de précontrainte multitorons											
	2	391		14			14					
0406	3	586	BBR VT 50 48/52/59	11	4.30	BBR VT 50 48/52/59	11	4.30				
	4	781	10/32/33	8		10/32/33	8					
	5	977		13			13					
0706	6	1172	BBR VT 60 59/63/73	10	6.10	BBR VT 60 59/63/73	10	6.10				
	7	1367	33,03,73	9		33,03,73	9					
***	8	1562	BBR VT 75	18	6.70	BBR VT 75	18	6.40				
0906	9	1758	76/81/91	16	6.70	76/81/91	16	6.10				
	10	1953		15			15					
1206	11	2148	BBR VT 75 76/81/91	13	6.90	BBR VT 75 76/81/91	13	6.90				
	12	2344	,,,,	11		,,,,,	11					
	13	2539	BBR VT 100 100/106/116	25			25	5.50				
1506	14	2734		24	5.50	BBR VT 100 100/106/116	24					
	15	2930		23			23					
	16	3125		21		BBR VT 100	21					
1005	17	3320	BBR VT 100	20	C 00		20	6.90				
1906	18	3515	100/106/116	18	6.90	100/106/116						
	19	3711		17		17						
	20	3906		16			26					
2206	21	4101	BBR VT 100 100/106/116	14	8.30	BBR VT 115 115/122/135	25	6.90				
	22	4297		13			23					
2400	23	4492	BBR VT 100	12	0.70	BBR VT 115	22	6.00				
2406	24	4687	100/106/116	11	8.70	115/122/135	20	6.90				
	25	4883		19			19					
2706	26	5078	BBR VT 115 115/122/135	18	7.60	BBR VT 115 115/122/135	18	7.60				
	27	5273	, , ,	17		, , ,	17					
	28	5468		17			25					
2405	29	5664	BBR VT 115	16	0.70	BBR VT 130	24	7.60				
3106	30	5859	115/122/135	15	8.70	129/137/152	23	7.60				
	31	6054		14			22					

3.6. Rayons de déviation minimaux et excentricités du câble pour gaines plates en plastique, catégories b/c

Type de câble	Nombre de torons	Force de blocage	Câbles de précontrainte fabriqués en USINE et sur des CHANTIERS					
	Y1860 S7-15.7	$P_0 = 0.7xF_{pk}$	Type de gaine h _i /b _i	Excentricité e	Rayon minimal vertical R _{v,min}	Rayon minimal horizontal R _{h,min}		
	pce	kN	-	mm	m	mm		
			Câbles de précont	rainte plats				
0406 FL	3	586	BBR VT	3	2.50	6.00		
U4U6 FL	4	781	21x72 FL	3	2.50	6.00		

4. Indications pour la mise en projet

4.1. Catégories de protection contre la corrosion

Nous nous référons à la directive ASTRA/OFROU 12 010 « Dispositions pour garantir la durabilité des câbles de précontrainte dans les ouvrages d'art » de l'Office fédéral des routes (ASTRA) et des CFF. On trouvera également un référencement correspondant dans la norme suisse SIA 262/1 au chiffre 3.4.2.2.

4.2. Protection contre la corrosion

Coulis d'injection

La protection définitive contre la corrosion des câbles de précontrainte avec adhérence est obtenue par injection d'un coulis cimentaire et par la propriété alcaline du béton de construction qui l'enveloppe. Les normes SN EN 445:2007 et 447:2007 ainsi que les avant-propos et annexes nationaux 2008 associés s'appliquent.

L'intervalle de temps maximal entre le montage des éléments des câbles et l'exécution de l'injection est appliqué conformément à la norme SIA 262, article 6.3, à savoir :

- 12 semaines au maximum entre la fabrication des câbles et l'injection
- 4 semaines au maximum dans le coffrage avant la coulée du béton
- 4 semaines au maximum entre la mise en tension et l'injection

De plus amples informations figurent dans les agréments techniques correspondants.

Protection temporaire contre la corrosion

Si le calendrier des travaux prévoit des délais plus longs, des mesures de protection temporaire contre la corrosion doivent déjà être planifiées au moment de la commande. Les dispositions de la norme SIA 262 (chiffre 6.3.2) et de la directive ASTRA (chiffre 5.2.2) s'appliquent. Dans de tels cas, Stahlton AG prévoit l'utilisation de torons dotés d'une protection temporaire, lesquels sont déjà traités dans ses ateliers par une émulsion de protection contre la corrosion certifiée.

L'aptitude des produits suivants à la protection temporaire contre la corrosion est considérée comme certifiée en Suisse (EMPA) :

- Protection antirouille 310
- NOX-RUST X-703-D
- ARC FLUID TK


4.3. Pertes de force de précontrainte

La précontrainte est transmise au câble à partir de l'ancrage mobile. Du fait des types de pertes les plus diverses, immédiates et liées au temps, la force de précontrainte varie dans le câble, que ce soit sur toute la longueur de celui-ci ou tout au long de la durée de vie de l'ouvrage.

Pertes dues au frottement

Des pertes immédiates se produisent principalement en raison du frottement entre le câble et la paroi intérieure de la gaine.

Le calcul des forces de précontrainte au moment de la mise en tension ainsi qu'après le retrait et le fluage doit prendre en compte un certain nombre de pertes. On trouvera de plus amples détails dans la littérature spécialisée.

Les pertes dues au frottement se calculent selon la loi de frottement de glissement de Coulomb :

 $P_x = P_{max} * e^{-\mu(\phi x + \Delta \phi \cdot x)}$

dans laquelle:

P_x force de précontrainte à la distance x du point de mise en tension

P_{max} force maximale dans le câble pendant la mise en tension

e nombre d'Euler

u coefficient de frottement de glissement

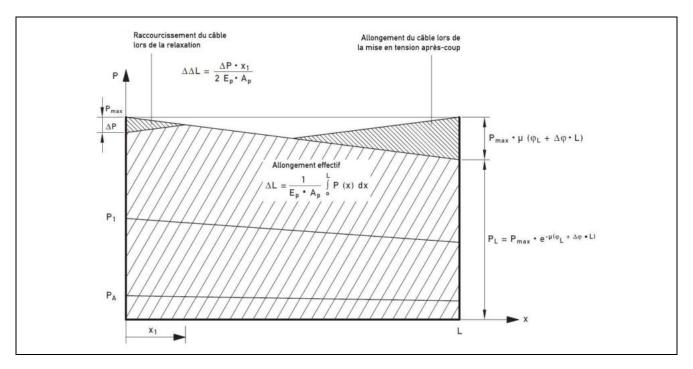
 $φ_x$ somme des déviations angulaires en radians sur le tronçon x (Σφi)

Δφ déviations angulaires involontaires par unité de longueur (déviations parasites)

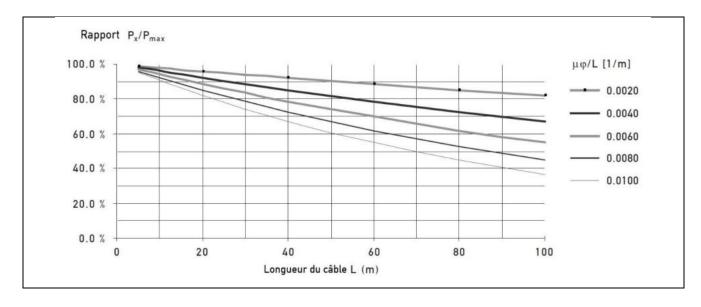
Pour μ et Δ_{ϕ} , on peut appliquer les valeurs suivantes :

Type de gaine	Catégorie	Coefficient	de frottement µ	Déviation angul	aire involontaire Δ_{φ}
		Valeur nominale	Plage de variation	Valeur nominale	Plage de variation
Gaine métallique	а	0.18	0.17 - 0.19	0.005	0.004 - 0.007
Gaine plastique	b / c	0.12	0.10 - 0.14	0.005	0.004 - 0.008

En raison des imprécisions de la pose et des écarts par rapport à la théorie, les pertes dues au frottement peuvent fluctuer. Nous recommandons d'en faire une estimation à l'aide des valeurs extrêmes des plages de variation ci-dessus.


Remarque à propos des pertes dues au frottement :

• Étant donné que les pertes dues au frottement dépendent beaucoup des déviations des câbles, il importe de minimiser la somme des angles de déviation lorsque l'on établit la géométrie des câbles de précontrainte. Les changements de direction brusques doivent être évités. Les rayons de déviation ne doivent pas être plus petits que nécessaire et les déviations horizontales doivent être évitées autant que possible.


Allongement du câble de précontrainte

L'allongement du câble de précontrainte résulte de la dilatation linéaire de celui-ci et du retrait du béton. Les considérations ci-après négligent le retrait du béton.

Distribution de la force de précontrainte

Le diagramme ci-dessous permet d'estimer le profil de la force de précontrainte. Pour des géométries de câbles uniformes, le facteur de frottement spécifique $\mu\phi/L$ est généralement compris entre 0,002/m et 0,006/m.

Remarques:

- · Le diagramme ci-dessus est basé sur une distribution uniforme du facteur de frottement $\mu\phi/L$.
- · Une distribution inégale de l'angle de déviation φ provoque une distribution de la force de traction qui s'écarte du diagramme ci-dessus.
- Dans le cas de câbles présentant des géométries irrégulières ou extraordinaires (brusques changements de direction, succession de rayons minimaux), il est possible que les facteurs de frottement spécifiques $\mu\phi/L$ mentionnés ci-dessus soient dépassés et que les pertes de précontrainte soient plus importantes. Il peut en résulter des valeurs de $\mu\phi/L$ supérieures à 0,01/m.

4.4. Mise en tension

L'application des forces de précontrainte s'effectue conformément au programme de mise en tension préalablement défini par l'auteur du projet. Il incombe à l'entreprise de vérifier sur l'ouvrage la résistance du béton requise. La mise en tension et, si nécessaire, le clavetage doivent être effectués à l'aide d'un vérin approprié. La force de calage est d'environ 25 kN par clavette. Après le relâchement de la force de précontrainte du vérin, le câble entraîne les torons (rentrée des clavettes) dans la tête d'ancrage.

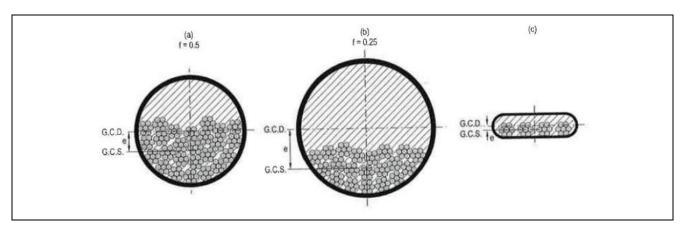
Les chemins de dilatation et les forces de précontrainte doivent être contrôlés en continu pendant la mise en tension. Les résultats de cette opération doivent être enregistrés, et les courses de précontrainte mesurées doivent être comparées aux valeurs précédemment calculées.

Les pertes dues au frottement dans les ancrages et dans le vérin sont prises en compte par Stahlton AG pendant le processus de mise en tension conformément à la norme SIA 262.

Force de surtension P_{max} 0,75 * F_{pk} Force de blocage P_0 0,7 * F_{pk}

Rentrée des clavettes

Pendant le transfert de charge du vérin à l'ancrage, les clavettes sont entraînées dans la tête d'ancrage (rentrée des clavettes). Il s'ensuit une nouvelle perte, respectivement, d'une partie du chemin de dilatation et de la force de précontrainte. En général, la rentrée des clavettes sur les ancrages mobiles et fixes ainsi que sur les coupleurs fixes est de 3 à 4 mm avec l'emploi d'un vérin doté d'un dispositif de calage. La rentrée des clavettes est prise en compte lors de la mise en tension.

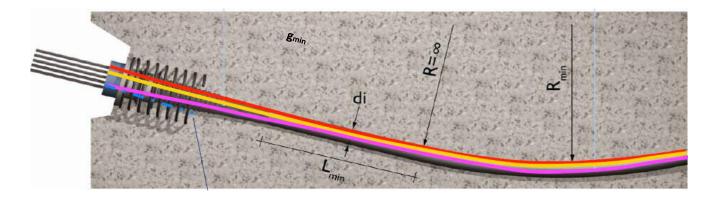

Pertes à long terme

Les pertes à long terme sont principalement causées par la relaxation de l'acier de précontrainte et le fluage ainsi que par le retrait du béton. La relaxation fait référence à la perte de tension dans l'acier sous tension en fonction du temps en raison de la permanence de l'allongement. Le fluage et le retrait décrivent le rétrécissement du béton en fonction du temps en raison de la perte d'humidité, respectivement de la présence de contraintes de compression permanentes.

4.5. Taux de remplissage et excentricité du câble de précontrainte

Le taux de remplissage f est le rapport de la surface occupée entre l'acier de précontrainte et l'aire de la section intérieure de la gaine. Il est généralement compris entre 0,30 et 0,50. Plus le taux de remplissage est faible, plus le centre de gravité du faisceau de torons est éloigné de celui de la gaine dans les zones où le câble décrit une courbe. Cette excentricité e devrait être prise en compte au moment de l'élaboration du projet car elle a une incidence sur la hauteur statique et donc sur la hauteur requise du support du câble.

Des informations sur l'excentricité des câbles de précontrainte pour toutes les tailles de gaine figurent au chapitre 3.2.



Centre de gravité d'un câble de précontrainte avec un taux de remplissage élevé (a) et faible (b) et avec une gaine plate (c)

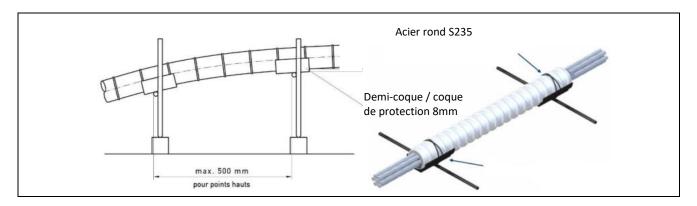
4.6. Segment rectiligne minimal de part et d'autre des ancrages

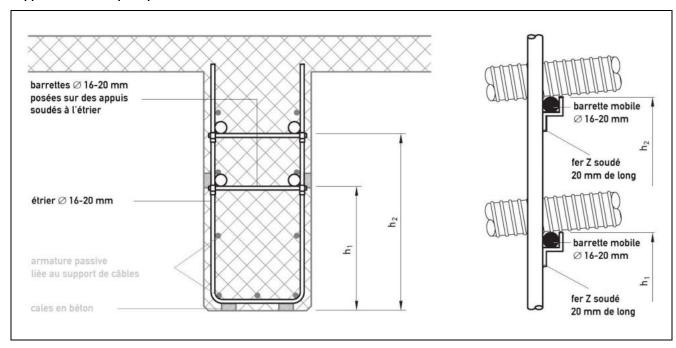
A proximité des ancrages et des coupleurs, les câbles de précontrainte doivent être rectilignes sur une longueur minimale donnée avant de pouvoir décrire un arc ayant le rayon minimal R_{min} (voir l'illustration). Le segment rectiligne g_{min} est déterminant à compter de la plaque d'ancrage.

Le critère ci-après est déjà pris en compte dans les spécifications ci-dessus du segment rectiligne.

Pour des câbles de précontrainte avec un taux de remplissage de 0,30 <f <0,50, la longueur minimale L_{min} après la trompette prend les valeurs suivantes :

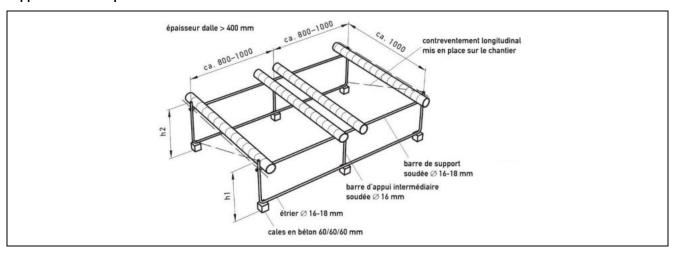
	Ancrages avec câbles de précontrainte de type CMI											
Туре	-	0406	0706	1206	1506	1906	2206	2706	3106			
Rectiligne (g) avant l'ancrage	mm	700	800	1100	1300	1300	1400	1600	1600			
		C	oupleurs pou	r câbles de pr	écontrainte d	le type CMI						
Rectiligne (g) de part et d'autre du coupleur	mm	700	800	1100	1300	1300	1400	1600	1600			


L_{min} = 5 * di ≥ 250mm

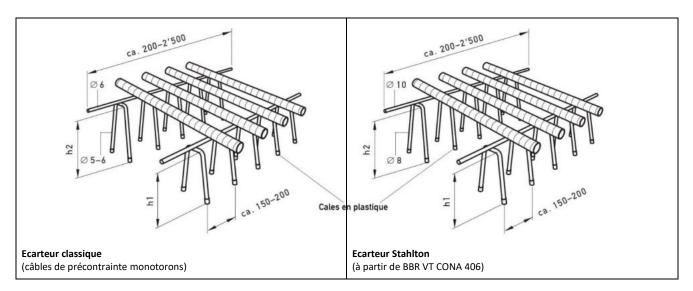

4.7. Supports de câbles

Afin de maintenir les câbles de précontrainte dans la **bonne position** et de les protéger contre le risque qu'ils soient soulevés lors du bétonnage, il est nécessaire de les fixer sur des supports disposés à distance régulière les uns des autres. Les recommandations techniques suivantes doivent être prises en considération lors de la spécification des supports de câbles :

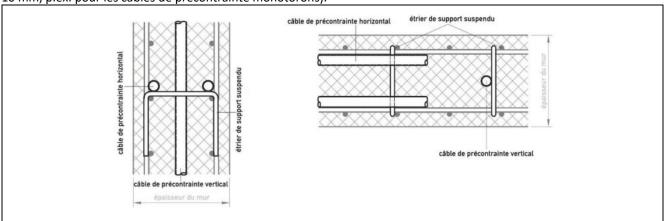
- En général, la distance entre les supports peut être égale à 10 fois le diamètre intérieur de la gaine, mais ne doit pas excéder 100 cm.
- Aux points hauts, nous recommandons une distance de 50 cm et l'insertion de demi-coques en plastique entre la gaine et le support du câble pour les gaines en plastique. L'épaisseur de la paroi de la demi-coque est de 8 mm.
- Les demi-coques doivent être placées au moins dans toutes les zones concaves de la trajectoire du câble (la force de déviation agit sur les supports).
- · Dans le cas des câbles plats, la distance entre les supports ne doit jamais excéder 60 à 80 cm.
- · Les barres transversales des supports de câbles doivent être en acier rond S235.
- · Les supports de câbles ne doivent pas faire partie de l'armature des étriers requise.



Supports de câbles pour poutres



Supports de câbles pour dalles


Epaisseur de dalle d < 400 mm

Des chevalets-écarteurs normaux peuvent être utilisés pour les câbles monotorons. Pour les câbles plus lourds, il faudrait utiliser des écarteurs renforcés ou des supports de câbles correspondant à d > 400 mm afin de pouvoir garantir la position du câble.

Supports de câbles pour murs

Les câbles de précontrainte horizontaux ou verticaux placés dans des murs sont fixés à des étriers suspendus. Pour les câbles de précontrainte horizontaux, on adaptera le diamètre des étriers au poids des câbles et à l'épaisseur du mur (Ø min. 10 mm, p.ex. pour les câbles de précontrainte monotorons).

4.8. Résistances du béton lors de la mise en tension

Au moment de l'application de la pleine force de précontrainte, en fonction des distances aux bords et des entraxes spécifiés ainsi que de l'armature de renfort choisie, dans la zone d'ancrage le béton doit avoir au moins une résistance à la compression f_{ck} égale aux valeurs indiquées dans le tableau ci-dessous.

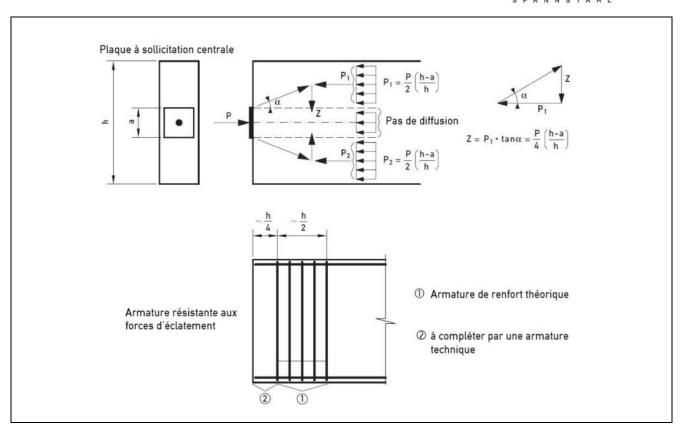
	Type de béton	C 25/30	C 30/37	C 35/45	C 40/50
Résistance à la compression			N/n	nm²	
Cylindre	f _{ck, cylindre}	25	30	35	40
Cube	f _{ck} , cube	30	37	45	50

Les informations contenues dans la présente documentation, telles que les distances aux bords/entraxes ainsi que les dimensions des spirales pour les ancrages, s'appliquent à un béton de qualité C30/37.

Si l'on devait utiliser des bétons d'autres types ou présentant d'autres résistances, il faudrait adapter ces spécifications en vertu de l'agrément technique européen ETA06-147. Cela vaut pour les ancrages SA/FA ainsi que pour les coupleurs K et H.

Les ancrages fixes P, CMO et S peuvent également être utilisés sans adaptation pour le béton de qualité C25/30.

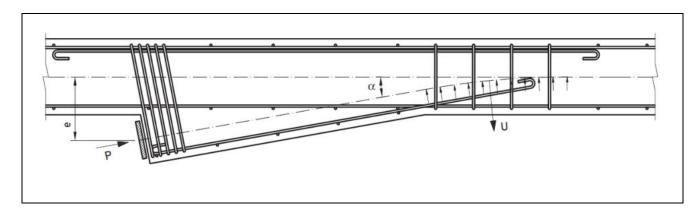
Pour une précontrainte partielle de 30 à 50 % de la force de précontrainte totale, la valeur caractéristique de la résistance du béton à la compression doit être d'au moins 0,5 * f_{ck, cylindre} ou 0,5 * f_{ck, cube}.


4.9. Application et déviation des forces

Application des forces

Lors de l'ancrage des câbles de précontrainte, il se produit des forces ponctuelles concentrées sur l'ouvrage porteur. Les ancrages (plaques d'ancrage et spirales) des systèmes de précontrainte Stahlton doivent être dimensionnés de telle sorte que les forces de précontrainte puissent être transmises correctement au béton.

Dans la zone de diffusion des forces, c'est-à-dire de la plaque d'ancrage à la coupe, où les contraintes sont réparties linéairement sur la section, il se produit dans le béton de plus grandes forces d'about et de traction transversales à cause de la transmission des efforts. Pour éviter que n'apparaissent des fissures, il faut reprendre ces forces de traction par une armature de frettage efficace. Les dimensions du béton doivent être choisies en fonction de ces contraintes. Pour de plus amples détails sur le dimensionnement dans la zone de diffusion des forces de précontrainte, on consultera la littérature spécialisée. Démarche pratique : en général, une estimation des forces d'éclatement sur la base de modèles de poutre en treillis simples avec $\tan\alpha = \frac{1}{2}$ est suffisante.



Forces de déviation

Lorsqu'ils sont tendus à la force P, les câbles de précontrainte arqués exercent une pression sur la surface intérieure formée par le béton. Pour un angle de déviation α et un rayon de courbure R, la force de déviation U se calcule comme il suit :

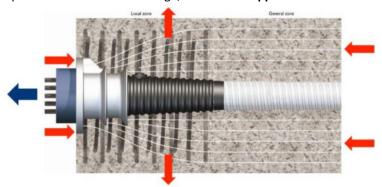
$$U = 2P \cdot \sin \alpha / 2 \approx P \cdot \alpha$$

Si un câble de précontrainte se trouve sur la partie convexe d'une construction en béton incurvée (p.ex. en présence de niches d'ancrage sortant d'une poutre en béton ou avec une précontrainte annulaire de réservoirs cylindriques), la poussée au vide doit être reprise par le béton. La pose d'étriers évite l'arrachement du câble de précontrainte.

La section nécessaire des étriers se calcule par la formule :

$$A_s = \gamma_P * U/f_{sd}$$

 γ_P : facteur de charge pour l'introduction de la précontrainte selon SIA 262, art. 4.1.5.5.2 f_{sd}: valeur de dimensionnement pour l'acier d'armature selon norme SIA 262, art. 2.3.2.5


Page 20/38

4.10. Armature dans la zone d'ancrage

L'armature, requise dans la zone particulièrement sollicitée directement à proximité de l'ancrage, est constituée d'une spirale destinée à reprendre les forces d'éclatement et d'une **armature de frettage supplémentaire** (armature de renfort) destinée à limiter les fissures.

Les spirales sont fournies par Stahlton AG avec l'ancrage, l'armature supplémentaire est à la charge du client.

Répartition des forces dans la zone d'ancrage

De façon standard et sauf demande contraire, Stahlton AG fournit des spirales dimensionnées pour le béton C30/37. Si la planification prévoit d'autres résistances du béton ou des spirales d'autres dimensions, le recours à Stahlton AG doit intervenir déjà dans la phase de planification. Parallèlement, il faut aussi adapter en conséquence l'armature de renfort

Spirales et armatures de renfort

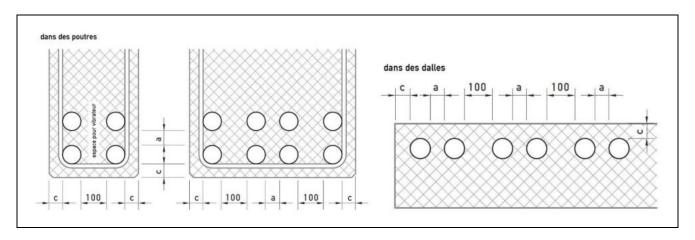
Tuno	Résistanc	e du béton	(inclue	Spira dans la livra	ale * aison par Sta	ıhlton)	(non incl	Armature ue dans la liv		Stahlton)
Type de câble			Diamètre spirale	Longueur de la spirale	Diamètre barres	Pas	Nombre d'étriers	Diamètre barres	Distance	Dimension ext. de l'étrier
СМІ	f _{ck, cylindre}	$f_{ck, cube}$	øS	LS						ВхВ
	N/mm2	N/mm2	mm	mm	mm	mm	Stk.	mm	mm	mm
0106	>20	>24					2	10	45	155/ 85
0406			155	185	10	45	3	12	55	190
0706			200	231	12		4	14	55	240
1206			250	282			6	14	50	290
1506	30	37	325	382			5	16	60	350
1906	30	5/	325	382	14	50	7	16	60	370
2206			340	382	14		8	16	50	400
2706			430	432			8	20	60	440
3106			430	432			8	20	60	480
CMF 406	20	24	240 / 130	285	10	45	7	10	50	290/ 180

Remarque : pour de plus amples informations sur les armatures dans la zone d'ancrage, on consultera l'agrément correspondant BBR VT CONA CMI conformément à ETA-06/147 ; pages 46ss :

L'armature de renfort et d'écartement requise ne fait pas partie de la livraison.

^{*}Tolérances dimensionnelles des Spirales selon SIA 262

4.11. Distances aux bords et entraxes

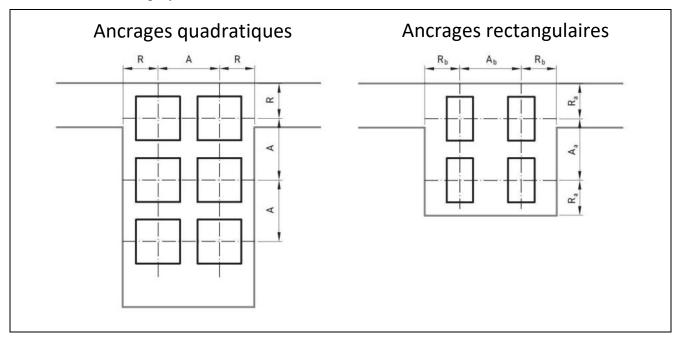

Distances entre les câbles de précontrainte

Sauf autres exigences spécifiées par le maître de l'ouvrage, les prescriptions de la norme SN EN 262, chapitre 5, s'appliquent aux distances minimales entre les câbles de précontrainte et aux entraxes :

Enrobage de l'armature c > 30-60 mm, selon la classe d'exposition

> diamètre max. des granulats> ½ diamètre de la gaine

Espacement a > diamètre max. des granulats



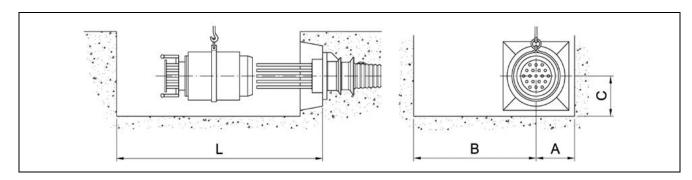
Distances entre les ancrages

Les distances minimales aux bords et les entraxes des ancrages des types A, K ou H ainsi que des ancrages spéciaux des types P, S et CMO dépendent de la résistance du béton au moment de la mise en tension. Les indications relatives à la résistance du béton C30/37 figurent dans les tableaux qui suivent.

Remarque: on trouvera de plus amples informations sur les armatures dans la zone d'ancrage dans l'agrément correspondant BBR VT CONA CMI selon ETA-06/147; pages 38ss.

Distances entre les ancrages pour des câbles multitorons

Béton C30/37				Type d	e câble d	e précon	trainte				
		01	106	0406	0706	1206	1506	1906	2206	2706	3106
Ancrage			Δ	ncrage à	redans	CMI/ CI	VIF (fon	te)			
Туре				SA,	FA, coup	leurs H	& K				
Entraxe	Α			210	260	340	380	425	460	505	545
Entraxe S _{rectangulaire}	Aa	mm	175	310							
	Ab		105	200							
Ancrage		En éventail									
Туре		Р									
Entraxe P _{quadratique}	Α			220							
Entraxe P _{rectangulaire}	Aa	mm		280	370	430	550	580	630	680	690
EIICI AXE Frectangulaire	Ab			200	230	330	350	400	440	500	550
Ancrage					A bo	ucles					
Туре					9	5					
Entraxe S _{rectangulaire}	Aa	mm	330	330	510	470					
Littlane Grectangulaire	Ab	111111	180	180	180	470					
Ancrage					Par adh	érence					
Туре					(3					
				0406	0606						
Entraxe H _{rectangulaire}	Aa	mm		430	630						
Lifti dae Tirectangulaire	Ab			180	180						
Distance aux bords R, Ra, Rb		mm			R = A/2	+ c (eni	obage ı	requis)			


Les distances appliquées ne doivent généralement pas être inférieures aux distances spécifiées dans les tableaux. Cependant, l'entraxe entre les ancrages peut être réduit jusqu'à 15 % dans une direction si, parallèlement, la distance dans la direction perpendiculaire à celle-ci est augmentée du même pourcentage. De plus, l'entraxe réduit ne doit pas être inférieur au diamètre extérieur de la spirale, et doit également permettre la pose de l'armature de renfort.

4.12. Place requise pour la mise en tension

Les câbles de précontrainte multitorons du système BBR VT CONA CMX sont mis en tension à l'aide de vérins à trous de centrage à double effet.

Le tableau ci-dessous précise l'espace requis pour les vérins. Il s'agit en l'occurrence des **dimensions minimales pour le vérin**. Dans la mesure du possible, il faudrait augmenter ces valeurs.

	Place requise pour les vérins											
Type de câble de précontrainte	Type de vérin	Poids du vérin	Surlongueur min. des torons	Dimensions mm								
precontrainte		kg	mm	Α	В	С	L					
0106	UP24	30	750	150	650	70	1000					
0406	M 1090	90	750	170	650	150	1500					
0706	M 1700	180	850	230	700	200	1700					
1206	M 3000	340	950	260	750	240	2000					
1906	M 4800	760	1200	330	900	310	2500					
2206	M 4800	760	1200	330	900	310	2500					
3106	M 6800	1200	1300	400	1000	350	2600					

4.13. Câbles de précontrainte fabriqués en usine

Transport et entreposage

Selon l'application, Stahlton AG fournit des câbles de précontrainte fabriqués en usine et/ou sur le chantier.

Avantages de la fabrication en usine :

- · gaines de plus petits diamètres (et donc plus grandes hauteurs statiques);
- · aucun problème lors de l'insertion des torons dans les gaines ;
- pose des câbles offrant plus de flexibilité dans le déroulement des travaux de construction ;
- · les gaines plates et les gaines de petits diamètres ne conviennent pas à la fabrication sur chantier.

Avantages de la fabrication sur le chantier :

- · les travaux de pose se limitent aux gaines vides et aux ancrages ;
- · des câbles de précontrainte jusqu'à 120 m de long peuvent être poussés/enfilés ;
- · utilisation réduite des appareils de levage.

La fabrication en usine connaît certaines limites, notamment en raison de la longueur des câbles de précontrainte, du diamètre des gaines, de l'espace disponible sur le chantier, etc. En règle générale, les câbles de précontrainte sont enroulés sur des bobines. Les câbles relativement petits peuvent également être livrés en vrac, en faisceaux ou sur des tourniques. Le tableau renseigne sur les longueurs maximales possibles des câbles fabriqués en usine. Dans la mesure du possible, le mode de livraison optimal devrait être clarifié assez tôt d'entente avec Stahlton AG.

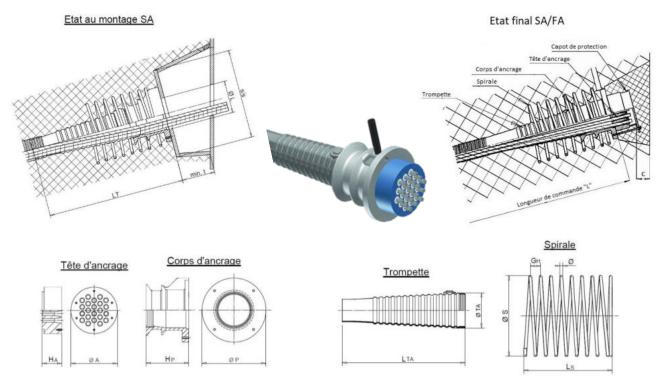
		Gaine métallique		Gaine plast	ique BBR VT
	Tournique,	Во	bine	Bol	oine
Type de câble de précontrainte	sans corps	petite	grande	petite	grande
precontrainte		Dim	ensions (Ø _{extérieur} /Ø _{inté}	rieur x B)	
			cm		
	ø220/180x40	ø200/160x70	ø230/170x108	ø200/160x70	ø230/170x108
		Câbles	monotorons		
0106	< 200 m	< 300 m			
		Câbles	multirorons		
0406		< 100 m		< 80 m	
0706		< 100 III		< 80 III	
1206		< 70 m	< 150 m	< 50 m	< 120 m
1506		< 70 III	\ 130 III	< 50 III	V 120 III
1906		< 50 m	< 120 m		< 95 m
2206		\ 30 III	\ 120 III		\ 33 III
2706			< 70 m		
3106			70111		

5. Types d'ancrages BBR VT CMX catégories a et b

5.1. Aperçu des types d'ancrages (ancrages mobiles et fixes)

Les types d'ancrages suivants sont disponibles de manière standard. L'aperçu décrit en outre leur champ d'application en combinaison avec les tailles des câbles.

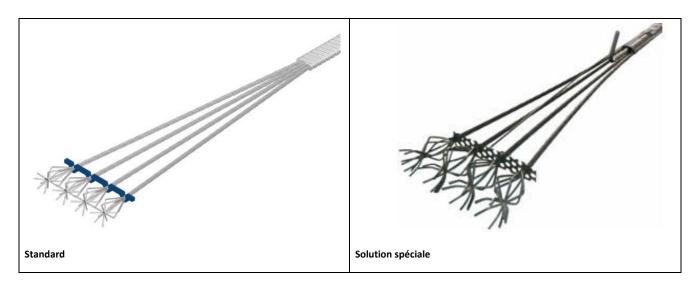
Désignation	ETA / SIA	Type de câble Toron	Caractéristique système Catégorie ¹⁾	Type d'ancrage mobile Type d'ancrage fixe	Type de coupleur (chap. 6ss)
BBR VT CONA CMI Type CMI	ETA-06/0147 du 30.10.17	0406 – 3106 Y1860S7-15.7	Cat. a, b Interne; par adhérence Ancrage à redans, compact, cylindrique (tromplaque) Cat. c Exécution modifiée (cf. chap. 7ss)	Cat. a, b Ancrage mobile: type CMI SA (0406 – 3106) Ancrage fixe: type CMI FA (0406 – 3106) Cat. c Exécution modifiée (cf. chap. 7ss)	Cat. a, b Coupleur fixe K: éléments SK, FK (0406 – 3106) Coupleur fixe H: éléments SH, FH (0406 – 3106) Coupleur mobile BH: (0406 – 3106) Cat. c Seulement type H en exécution modifiée (cf. chap. 7ss)
BBR VT CONA CMF Type CMF	ETA-12/0076 du 14.12.17	0406 Y1860S7-15.7	Cat. a, b Interne; par adhérence Ancrage à redans, compact, plat (tromplaque)	Cat. a, b Ancrage mobile: type CMF SA 0406 Ancrage fixe: type CMF FA 0406	Cat. a, b Coupleur fixe H: éléments SH, FH (0206 – 0406) et Coupleur mobile: type BH 0406
BBR VT CONA CMO (CONA CMO) Type C	ETA-15/0808 du 22.02.16	0406 - 0606 Y1860S7-15.7	Cat. a, b Interne; par adhérence Ancrage fixe à bosses CONA CMO n'est fabriqué qu'en association avec un système de précontrainte CONA CMI, CMF	Cat. a, b Ancrage mobile: voir CONA CMI, CMF Ancrage fixe: (0406 – 0606)	Cat. a, b Coupleur: voir CONA CMI, CMF



				_ "	
Désignation	ETA / SIA	Type de câble Toron	Caractéristique système Catégorie ¹⁾	Type d'ancrage mobile Type d'ancrage fixe	Type de coupleur (chap. 6ss)
BBR VT CONA Type S	Preuve E+K selon SIA 262 n° 004 du 09.02.17	0406 – 1206 Y1860S7-15.7	Cat. a, b Interne; par adhérence Ancrage fixe à boucles L'ancrage type S peut être fabriqué en association avec un système de précontrainte CONA CMI, CMF	Cat. a, b Ancrage mobile: voir CONA CMI, CMF Ancrage fixe: (0406 – 1206)	Cat. a, b Coupleur: voir CONA CMI, CMF
BBR VT CONA Type P	Preuve E+K selon SIA 262 n° 004 du 09.02.17	0406 – 3106 Y1860S7-15.7	Cat. a, b Interne; par adhérence Ancrage fixe en éventail avec douilles de compression L'ancrage type P peut être fabriqué en association avec un système de précontrainte CONA CMI, CMF	Cat. a, b Ancrage mobile: voir CONA CMI, CMF Ancrage fixe P: (0406 – 3106)	Cat. a, b Coupleur: voir CONA CMI, CMF
BBR VT CONA CMM Type CMM	ETA-06/0165 du 08.06.18	0106 (Single) Y1860S7-15.7	Cat. a, b Single (1 toron): Interne; par adhérence et sans adhérence Ancrages en fonte Single léger	Cat. a, b Ancrage mobile: type CMM SA Ancrage fixe: type CMM FA Ancrage fixe: type S	Cat. a, b Coupleur fixe éléments SH, FH

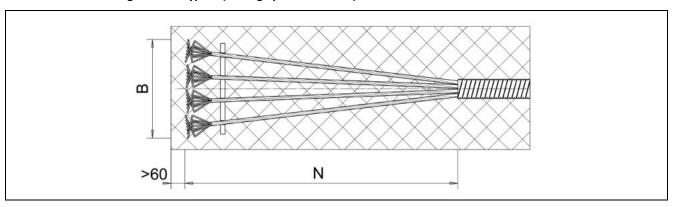
1) selon norme SIA 262, chiffre 3.4.2.2

5.2. Ancrage type CMI/CMF (ancrage mobile SA et ancrage fixe FA)



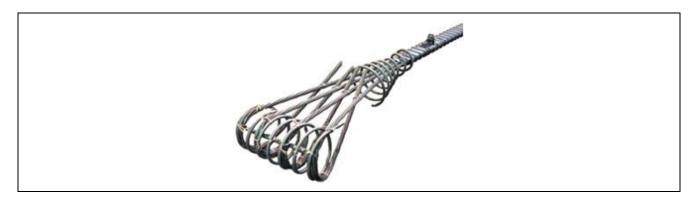
	Type de câble			0406	0406	0706	1206	1506	1906	2206	2706	3106
Désignatio	n BBR VT CONA			СМІ	CMF	СМІ	СМІ	СМІ	СМІ	СМІ	CI	MI
Longueur de l'ancrage	À partir du coffrage	LT		300	420	430	625	695	695	800	97	75
T24 - 1/2	Diamètre	ØA		100	100	130	160	200	200	225	25	55
Tête d'ancrage	Hauteur	H _A		50	50	55	65	75	85	95	11	10
Cama Wanana	Diamètre	Øρ		130	145/100	170	225	280	280	310	36	50
Corps d'ancrage	Hauteur	H _P		120	120	130	150	195	195	205	25	50
	Diamètre	ØTA		72	72	88	127	153	153	170	19	91
Trompette	Longueur	L _{TA}		180	300	300	475	500	500	595	72	25
	Diamètre	Øs	mm	155	240/130	200	250	325	325	340	43	30
Spirale (Tolérances	Longueur	Ls		185	285	231	282	382	382	382	43	32
dimensionnelles selon SIA 262)	Diamètre barre	ø		10	10	12	14	14	14	14	1	4
301011 314 2021	Pas	Gн		45	45	50	50	50	50	50	5	0
Capot de	Diamètre	Øн		102	102	134	168	208	208	233	26	53
protection	Hauteur	Нн		90	70	90	95	115	115	125	14	10
	Surface coffrage	s/s		220	220	280	380	430	450	500	55	50
	Orifice dans coffrage	ØL		70	70	100	130	160	160	180	20	00
Mise en œuvre	Profondeur de niche	t		90 + c	90+c	90 + c	100 + c	115	+ c	125 + c	140) + c
	Poids	-	kg	8	8	14	28	45	50	64	10	01

Légende : **c** = enrobage min. de l'armature (env.60 mm) Toutes les valeurs s'appliquent à un béton de résistance C30/37

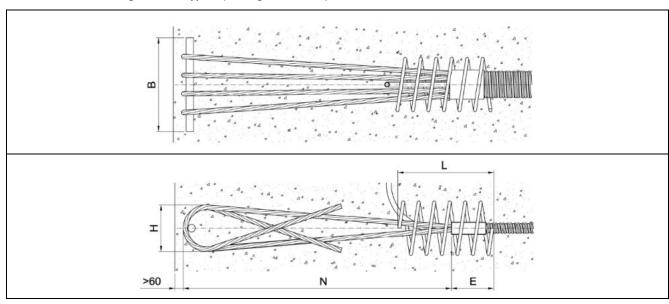


5.3. Ancrage fixe type CMO

Avec un ancrage de type C, le câble de précontrainte est **ancré dans le béton d'enrobage par adhérence des torons**. Les extrémités des torons sont repoussées afin de générer un effet d'adhérence optimal.


Dimensions de l'ancrage fixe de type C (ancrage par adhérence)

Type de câble	e de précontrainte			0406	0606	1206	1506	1906	2206	2706	3106
	Largeur	В		400	600						
	Hauteur	Н	mm	100	100						
	Longueur de l'ancrage	N		1200	1200			Sur de	emande		
Mise en œuvre	Poids à la pose	-	kg	2	3						

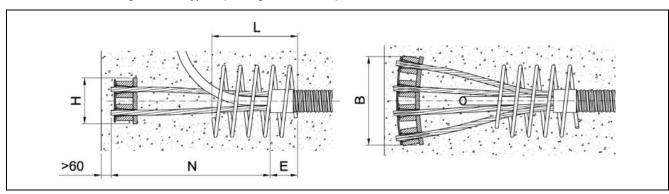


5.4. Ancrage fixe type S

Avec l'ancrage à boucles S, les extrémités des torons sont **repliées en boucles**. L'écartement des torons est assuré par une spirale.

Dimensions de l'ancrage fixe de type S (ancrage à boucles)

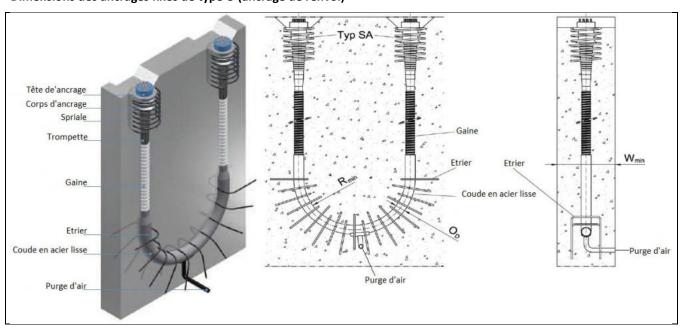
	Type de câble de précontra	ainte		0406	0706	1206
	Largeur	В		300	480	400
Boucle	Hauteur	Н	mm	155	155	400
	Longueur de l'ancrage	N		900	900	900
	Diamètre extérieur	øa		175	175	220
	Longueur	L		350	350	335
Spirale	Distance	E	mm	100	100	100
	Diamètre barre	Ø		10	10	14
	Pas	GH		40	40	50
Mise en œuvre	Poids à la pose	-	kg	7	10	18



5.5. Ancrage fixe type P

L'ancrage en éventail de type P est un ancrage par adhérence dans lequel environ 80 % de la force est introduite dans la structure sur la longueur N par adhérence normale. La force résiduelle est transférée à la plaque d'ancrage via les douilles à clavettes fixées sur les différents torons. Les plaques standards sont rectangulaires, mais peuvent également être carrées pour des forces plus faibles.

Dimensions de l'ancrage fixe de type P (ancrage en éventail)


Ту	pe de câble de précontrainte			0406	0706	1206	1506	1906	2206	2706	3106
	Quadratique	B/ B		145	230	-	-	-	-	-	-
Plaque	Largeur	В	mm	260	270	280	350	370	420	480	480
d'ancrage	Hauteur	Н		90	140	230	230	280	280	300	350
	Longueur de l'ancrage	N		500	500	600	700	700	800	900	900
	Diamètre extérieur	øa		175	175	260	300	325	325	420	420
	Longueur	L		350	350	280	320	350	390	390	390
Spirale	Distance	Е	mm	100	100	60	60	60	60	70	70
	Diamètre barre	ø		10	10	12	12	14	14	16	16
	Pas	GH		40	40	50	50	50	50	50	50
Mise en œuvre	Poids à la pose	-	kg	7	12	20	25	35	38	50	55

5.6. Ancrage de renvoi type U

Des ancrages de renvoi sont souvent nécessaires **lorsqu'il n'existe pas d'accès pour une extrémité fixe du câble** – par exemple dans des **conteneurs** ou des **silos**. La partie rectiligne du câble se trouve alors dans les parois, et la partie courbée dans la fondation. Le rayon de déviation fortement réduit provoque une pression de contact très élevée entre le toron et la gaine. La section courbée du câble est constituée d'un tube en acier lisse.

Dimensions des ancrages fixes de type U (ancrage de renvoi)

Type de câble de	0406	0706	1206	1906	2206	2406	3106						
Rayon d'arc	R _{min}	m	0.8	0.9	1.2	1.4	1.5	1.6	1.8				
				Gaine métallique									
Type de gaine			54/60	66/72	84/90	97/103	106/112	115/121	129/135				
Coude en acier	øextérieur	mm	70	82.5	101.6	114.3	127	133	152.4				
					Ga	ine en matiè	ere plastique						
Type de gaine	BBR V	Γ	50	60	75	100	115	115	130				
Coude en acier	øextérieur	mm	60.3	70	88.9	121	133	133	152.4				

Les épaisseurs minimales des parois W_{min} requises pour le coude en acier lisse sont généralement déterminées par

les distances minimales des ancrages au bord.

Toutefois, dans tous les cas, elles doivent être ≥ (3*O_D).

Pour absorber les forces d'about, des étriers doivent être disposés avec une résistance de dimensionnement égale à

$$Z_{Rd} = A_s * n * f_{sd} \ge 0.25 * \pi * P_d (1 - 0.87 * O_D/W)$$

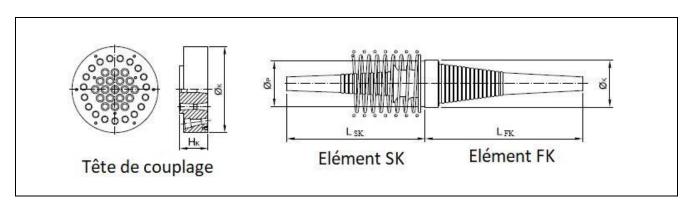
Et, pour les petites valeurs de O_D/W : $Z_{Rd} = A_s * n * f_{sd} \sim 0.8 * (1.5 * F_{pm0}) \sim 1.2 * F_{pm0}$.

Légende :

As aire de la section d'un étrier ($\phi^2 * \pi/4$)

n nombre d'étriers

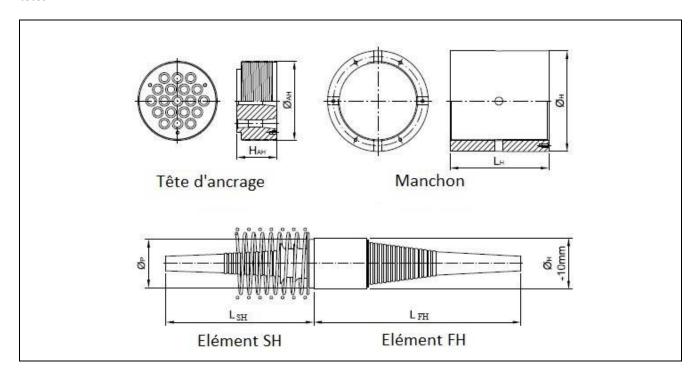
fsd valeur de dimensionnement de la limite de fluage de l'acier d'armature



6. Coupleurs BBR VT CONA CMI; catégories a et b

6.1. Coupleur K (corps de couplage)

Le coupleur K est un accouplement à recouvrement dans lequel les torons du câble de précontrainte neuf et existant sont fixés dans la même tête de couplage. Le coupleur se trouve sur la reprise de bétonnage entre la phase de construction existante et la phase de construction suivante. Les torons du câble à accoupler sont enfilés dans la tête de couplage du câble mis en tension et y sont fixés.


Type de câble de précontrainte					0706	1206	1506	1906	2206	2706	3106
Coupleur K	Diamètre	Øĸ	mm	185	205	240	290	290	310	390	
	Hauteur	Нк	mm	85	85	90	90	95	105	120	
Elément FK	Longueur	L _{FK}	mm	550	720	815	975	865	940	1170	
	Trompette	ØFK		185	203	240	275	275	305	375	
	Poids à la pose	-	kg	17	21	31	45	48	60	11	18
	Longueur	Lsk	ma ma	300	430	625	695	695	800	97	75
Elément SK (cf. 5.1)	Ancrage	Øта	mm	72	88	127	153	153	170	19	91
	Poids à la pose	-	kg	8	14	28	39	39	64	10	01

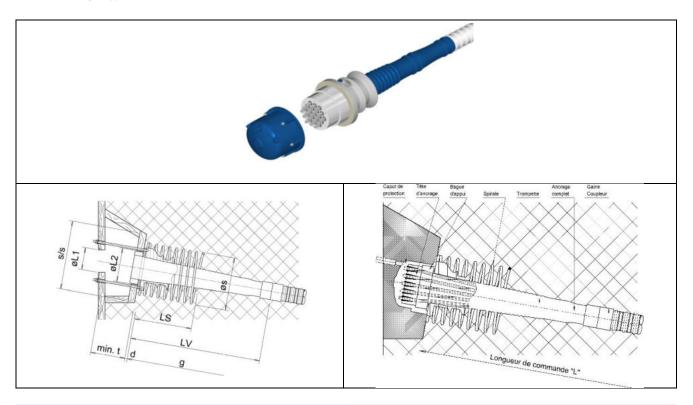
6.2. Coupleur H (accouplement à manchon)

Avec l'accouplement à manchon H, les têtes d'ancrage du câble de précontrainte existant et du nouveau câble sont reliées entre elles par un manchon. Les têtes d'ancrage sont dotées d'un filetage extérieur, et le manchon est vissé sur les deux têtes.

Type de câble de précontrainte					0706	1206	1506	1906	2206	2706	3106
Manchon	Diamètre	Øн	mm	133	170	213	259	269	296	330	
iviantnon	Longueur	L _H	mm	180	200	230	240	270	270	320	
Partie FH	Longueur	L _{FH}	mm	650	650	820	1045	1045	1170	13	50
	Trompette	Ø _{FH}		185	203	240	275	275	305	375	
	Poids à la pose	-	kg	15	28	53	80	80	124	16	55
	Longueur	L _{SH}	mm	300	430	625	695	695	800	97	75
Partie SH (cf. 5.1)	Ancrage	Ø та	mm	72	88	127	153	153	170	19	91
	Poids à la pose	-	kg	8	14	28	45	50	64	10)1

Le coupleur **H peut également être réalisé comme accouplement mobile (BH)**. Ici aussi, comme pour le type d'accouplement **BH**, la longueur du cylindre en tôle d'acier est adaptée aux chemins de dilatation escomptés.

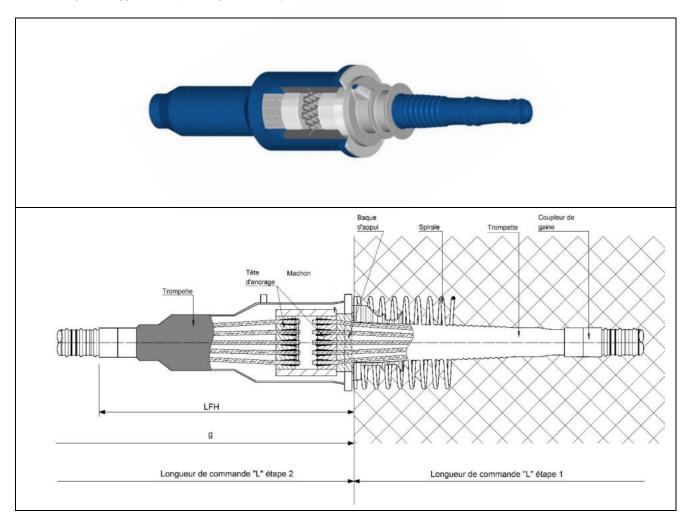
.



Type de câble de précontrainte				0406	0706	1206	1506	1906	2206	2706	3106	
Coupleur mobile BH												
Coupleur BH	Diamètre	øВН	mm	145	180	225	270	280	310	345	350	
	Longueur	L _{BH}		variable en fonction de la longueur du câble de précontrainte								

7. Ancrages BBR VT CMI E catégorie c (câbles isolés électriquement)

7.1. Ancrage type CMI E (SA et FA)



Type de câble de précontraint	0406	0706	1206	1506	1906	2206	2706	3106				
Longueur de l'ancrage	À partir du coffrage	L _V		345	460	600	770	770	900	10	50	
Tête d'ancrage	Diamètre (Hauteur y c. bague d'appui Diamètre (100	130	160	200	200	225	255		
rete d'ancrage				110	115	130	150	150	160	17	175	
Corps d'ancrage				145	170	225	280	280	310	360		
corps a ancrage	Hauteur	H _P		120	130	150	195	195	205	25	50	
Trompette	Diamètre	Øτ		75	88	127	153	153	170	191		
Trompette	Longueur	L _{TA}		225	330	450	575	575	695	800		
	Diamètre	Øs		155	200	250	325	325	340	430		
Spirale	Longueur	Ls		185	231	282	382	382	382	43	32	
Spirate	Diamètre barre		mm	10	12	14	14	14	14	14	4	
	Pas	Gн		45	50	50	50	50	50	50	0	
Capot de protection	Diamètre			120	150	200	270	270	270	30	00	
capot de protection	Hauteur	H _H		180	190	200	240	240	240	27	70	
	Surface de coffrage	s/s		220	280	380	430	450	500	55	50	
	Plaque d'étanchéité	d		20	20	20	20	20	20	20	0	
	Orifice dans coffrage	Ø _{L1}		110	140	180	230	230	250	29	90	
Mise en œuvre	Office dans confage	ØL2		70	100	130	160	160	180	20	00	
	Profondeur de niche	t		180 + c	190 + c	220 + c	240 + c		240 + c	270 + c		
	Poids	-	kg	10	14	28	45	50	64	10)1	

Légende : **c** = enrobage min. de l'armature (p.ex.60 mm) Toutes les valeurs s'appliquent à un béton de résistance C30/37

7.2. Coupleurs type CMI E (accouplement H)

Type de câble de précontrainte					0706	1206	1506	1906	2206	2706	3106
Manchon	Diamètre	Øн		133	170	213	259	269	296	330	
	Longueur	L _H	mm	180	200	230	240	270	270	320	
Elément FH 2 ^e étape	Longueur	L _{FH}	mm	650	650	820	1045	1045	1170	1350	
	Trompette	Øғн		185	225	250	315	315	355	400	
	Poids à la pose	-	kg	15	28	53	79	100	124	16	55
Elément SH	Longueur	L _{SH}	mm	345	460	600	770	770	900	10	50
(comme SA) 1º étape	Trompette	Øsн	mm	75	88	127	153	153	170	19	91
	Poids à la pose	-	kg	10	14	28	45	50	64	10	01

7.3. Consignes spécifiques applicables aux câbles de la catégorie c

En principe, les consignes se réfèrent à la directive ASTRA 12010 « Dispositions pour garantir la durabilité des câbles de précontrainte dans les ouvrages d'art » édition 2007 V2.00, publiée par l'Office fédéral des routes et CFF SA.

Les câbles de précontrainte confectionnés comme câbles de catégorie c présentent en soi la meilleure protection possible contre tout risque de corrosion du fait que diverses mesures complémentaires permettent de réaliser une séparation électrique complète entre l'acier de précontrainte et le béton. L'isolation électrique requise est obtenue grâce à une gaine complète en matière plastique. Le succès durable en termes de contrôle et de mesure de la séparation électrique nécessite une collaboration optimale entre toutes les personnes impliquées, à savoir, outre le fournisseur du système de câbles, l'auteur responsable du projet ainsi que l'entrepreneur principal et les sous-traitants (ferrailleur).

7.4. Dispositifs de mesure

En principe, distinction est faite, dans la conception du dispositif de mesure, entre les objets présentant ou non un risque de courants vagabonds. Pour prévenir la situation dangereuse, il est recommandé de procéder à des mesures de courants vagabonds dès la phase de planification du projet.

Raccord unilatéral : critères principaux : fatigue et surveillance

Raccord de part et d'autre : critères principaux : risque de courants vagabonds

Coffrets de mesure

Les coffrets de mesure doivent être positionnés de manière à être facilement accessibles pour garantir une surveillance sans obstacle pendant toute leur durée de vie.

- En général, seuls des câbles de mesure de 2,5 mm² sont introduits dans les coffrets
- · Les solutions en saillie sont en principe plus simples à installer.
- · Les solutions noyées doivent être planifiées longtemps à l'avance.
- Dans tous les cas, il convient de choisir des positionnements garantissant une bonne protection contre les intempéries directes.

Coffrets de raccordement

Les coffrets de raccordement servent à réunir les câbles de raccordement de plusieurs câbles de précontrainte. Ils sont positionnés (des deux côtés) à proximité des têtes des câbles afin de limiter les sections des câbles de raccordement dépendant de la longueur. La mesure de la résistance peut se faire directement dans le boîtier de raccordement ou, au besoin, sur des câbles de mesure prolongés dans un coffret de mesure central.

- En général, des câbles électriques de 10 à 25 mm² sont introduits dans les coffrets de raccordement.
- Les solutions en saillie sont en principe plus simples à installer.
- Les solutions noyées doivent être planifiées longtemps à l'avance.
- Dans tous les cas, il convient de choisir des positionnements garantissant une bonne protection contre les intempéries directes.
- Les câbles de précontrainte présentant des valeurs de mesure insuffisantes peuvent être raccordés à la terre à cet endroit.